780 resultados para SNPs Associations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION:Subclinical atherosclerosis (SCA) measures in multiple arterial beds are heritable phenotypes that are associated with increased incidence of cardiovascular disease. We conducted a genome-wide association study (GWAS) for SCA measurements in the community-based Framingham Heart Study.METHODS:Over 100,000 single nucleotide polymorphisms (SNPs) were genotyped (Human 100K GeneChip, Affymetrix) in 1345 subjects from 310 families. We calculated sex-specific age-adjusted and multivariable-adjusted residuals in subjects tested for quantitative SCA phenotypes, including ankle-brachial index, coronary artery calcification and abdominal aortic calcification using multi-detector computed tomography, and carotid intimal medial thickness (IMT) using carotid ultrasonography. We evaluated associations of these phenotypes with 70,987 autosomal SNPs with minor allele frequency [greater than or equal to] 0.10, call rate [greater than or equal to] 80%, and Hardy-Weinberg p-value [greater than or equal to] 0.001 in samples ranging from 673 to 984 subjects, using linear regression with generalized estimating equations (GEE) methodology and family-based association testing (FBAT). Variance components LOD scores were also calculated.RESULTS:There was no association result meeting criteria for genome-wide significance, but our methods identified 11 SNPs with p < 10-5 by GEE and five SNPs with p < 10-5 by FBAT for multivariable-adjusted phenotypes. Among the associated variants were SNPs in or near genes that may be considered candidates for further study, such as rs1376877 (GEE p < 0.000001, located in ABI2) for maximum internal carotid artery IMT and rs4814615 (FBAT p = 0.000003, located in PCSK2) for maximum common carotid artery IMT. Modest significant associations were noted with various SCA phenotypes for variants in previously reported atherosclerosis candidate genes, including NOS3 and ESR1. Associations were also noted of a region on chromosome 9p21 with CAC phenotypes that confirm associations with coronary heart disease and CAC in two recently reported genome-wide association studies. In linkage analyses, several regions of genome-wide linkage were noted, confirming previously reported linkage of internal carotid artery IMT on chromosome 12. All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The results from this GWAS generate hypotheses regarding several SNPs that may be associated with SCA phenotypes in multiple arterial beds. Given the number of tests conducted, subsequent independent replication in a staged approach is essential to identify genetic variants that may be implicated in atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.METHODS:Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.RESULTS:The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 +/- 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency [greater than or equal to] 10%, genotype call rate [greater than or equal to] 80%, Hardy-Weinberg equilibrium p-value [greater than or equal to] 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms.METHODS:We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates [greater than or equal to]80%, HWE p [greater than or equal to] 0.001, and MAF [greater than or equal to]10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers.RESULTS:Heritability estimates for all bone phenotypes were 30-66%. LOD scores [greater than or equal to]3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 x 10-6 and 2.5 x 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Blood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes.METHODS:In 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a ~30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency [greater than or equal to]10%, genotypic call rate [greater than or equal to]80%, and Hardy-Weinberg equilibrium p [greater than or equal to] 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n ~1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n~6650 individuals).RESULTS:Long-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10-5 in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10-4 ranged from 13 to 18 and with p < 10-3, from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10-5 across all three stages) between any of the tested SNPs and lipid phenotypes.CONCLUSION:Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., < 1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. METHODS:We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate [greater than or equal to]80%, minor allele frequency [greater than or equal to]10%, Hardy-Weinberg test p [greater than or equal to] 0.001).RESULTS:In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1. In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study contexualises the relationship between the armed forces and the civil authority in Ireland using and revising the theoretical framework advanced by Huntington. It tracks the evolution of the idea of a representive body for soldiers in the late 1980s, to the setting up of statutory associations under the Defence Amendment Act 1990. The study considers Irish soldiers political agitation and their use of peaceful democratic activities to achieve their aims. It highlights the fundamental policy arguments that were made against the idea of representation for the army and positions those arguments in the study of civil-military relations. Utilising unique access to secret Department of Defence files, it reveals in-depth ideological arguments advanced by the military authories in Ireland against independent representation. This thesis provides an academic study of the establishment of PDFORRA. It answers key questions regarding the change in the position of Irish government who were categorically opposed to the idea of representation in the army. It illustrates the involvement of other agencies such as the European Organisation of Military Associations (Euromil) reveals reciprocal support by the Irish associations to other emerging groups in Spain. Accessing as yet unpublished Department of Defence files, study analyses tension between the military authorities and the government. It highlights for the first time the role of enlisted personnel in the shaping of new state structures and successfully dismmisses Huntingtons theoretical contention that enlisted personnel are of no consequence in the study of civil-military relations. It fills a gap in our understanding, identified by Finer, as to how politicisation of soldiers takes place. This thesis brings a new dimension to the discipline of civil-military relations and creates new knowledge that will enhance our understanding of an area not covered previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create "synthetic associations" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of "blocks" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA(2) activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA(2) activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA(2) activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6 x 10(-24)); CELSR2/PSRC1 on chromosome 1 (p = 3 x 10(-15)); SCARB1 on chromosome 12 (p = 1x10(-8)) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4 x 10(-8)). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA(2) mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA(2) activity and mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (PC) is the second leading cause of cancer death in men. Recent reports suggest that excess of nutrients involved in the one-carbon metabolism pathway increases PC risk; however, empirical data are lacking. Veteran American men (272 controls and 144 PC cases) who attended the Durham Veteran American Medical Center between 2004-2009 were enrolled into a case-control study. Intake of folate, vitamin B12, B6, and methionine were measured using a food frequency questionnaire. Regression models were used to evaluate the association among one-carbon cycle nutrients, MTHFR genetic variants, and prostate cancer. Higher dietary methionine intake was associated with PC risk (OR = 2.1; 95%CI 1.1-3.9) The risk was most pronounced in men with Gleason sum <7 (OR = 2.75; 95%CI 1.32- 5.73). The association of higher methionine intake and PC risk was only apparent in men who carried at least one MTHFR A1298C allele (OR = 6.7; 95%CI = 1.6-27.8), compared to MTHFR A1298A noncarrier men (OR = 0.9; 95%CI = 0.24-3.92) (p-interaction = 0.045). There was no evidence for associations between B vitamins (folate, B12, and B6) and PC risk. Our results suggest that carrying the MTHFR A1298C variants modifies the association between high methionine intake and PC risk. Larger studies are required to validate these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study's analysis plan. RESULTS: We developed a Bayesian statistical model for the prior probability of phenotype-genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super-track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen-2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non-informative predictors and evaluated the model's ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP's presence in the GC. Further, using data from a genome-wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome-wide scale and improves power to detect associations. CONCLUSIONS: We show how diverse functional annotations can be efficiently combined to create 'functional signatures' that predict the a priori odds of a variant's association to a trait and how these signatures can be integrated into a standard genome-wide-scale association analysis, resulting in improved power to detect truly associated variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Telomere-related genes play an important role in carcinogenesis and progression of prostate cancer (PCa). It is not fully understood whether genetic variations in telomere-related genes are associated with development and progression in PCa patients. METHODS: Six potentially functional single-nucleotide polymorphisms (SNPs) of three key telomere-related genes were evaluated in 1015 PCa cases and 1052 cancer-free controls, to test their associations with risk of PCa. Among 426 PCa patients who underwent radical prostatectomy (RP), the prognostic significance of the studied SNPs on biochemical recurrence (BCR) was also assessed using the Kaplan-Meier analysis and Cox proportional hazards regression model. The relative telomere lengths (RTLs) were measured in peripheral blood leukocytes using real-time PCR in the RP patients. RESULTS: TEP1 rs1760904 AG/AA genotypes were significantly associated with a decreased risk of PCa (odds ratio (OR): 0.77, 95% confidence interval (CI): 0.64-0.93, P=0.005) compared with the GG genotype. By using median RTL as a cutoff level, RP patients with TEP1 rs1760904 AG/AA genotypes tended to have a longer RTL than those with the GG genotype (OR: 1.55, 95% CI: 1.04-2.30, P=0.031). A significant interaction between TEP1 rs1713418 and age in modifying PCa risk was observed (P=0.005). After adjustment for clinicopathologic risk factors, the presence of heterozygotes or rare homozygotes of TEP1 rs1760904 and TNKS2 rs1539042 were associated with BCR in the RP cohorts (hazard ratio: 0.53, 95% CI: 0.36-0.79, P=0.002 and hazard ratio: 1.67, 95% CI: 1.07-2.48, P=0.017, respectively). CONCLUSIONS: These data suggest that genetic variations in the TEP1 gene may be biomarkers for risk of PCa and BCR after RP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD133 is one of the most common stem cell markers, and functional single nucleotide polymorphisms (SNPs) of CD133 may modulate its gene functions and thus cancer risk and patient survival. We hypothesized that potentially functional CD133 SNPs are associated with gastric cancer (GC) risk and survival. To test this hypothesis, we conducted a case-control study of 371 GC patients and 313 cancer-free controls frequency-matched by age, sex, and ethnicity. We genotyped four selected, potentially functional CD133 SNPs (rs2240688A>C, rs7686732C>G, rs10022537T>A, and rs3130C>T) and used logistic regression analysis for associations of these SNPs with GC risk and Cox hazards regression analysis for survival. We found that compared with the miRNA binding site rs2240688 AA genotype, AC + CC genotypes were associated with significantly increased GC risk (adjusted OR = 1.52, 95% CI = 1.09-2.13); for another miRNA binding site rs3130C>T SNP, the TT genotype was associated with significantly reduced GC risk (adjusted OR = 0.68, 95% CI = 0.48-0.97), compared with CC + CT genotypes. In all patients, the risk rs3130 TT variant genotype was significantly associated with overall survival (OS) (adjusted P(trend) = 0.016 and 0.007 under additive and recessive models, respectively). These findings suggest that these two CD133 miRNA binding site variants, rs2240688 and rs3130, may be potential biomarkers for genetic susceptibility to GC and possible predictors for survival in GC patients but require further validation by larger studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Notch signaling pathway is constitutively activated in human cutaneous melanoma to promote growth and aggressive metastatic potential of primary melanoma cells. Therefore, genetic variants in Notch pathway genes may affect the prognosis of cutaneous melanoma patients. METHODS: We identified 6,256 SNPs in 48 Notch genes in 858 cutaneous melanoma patients included in a previously published cutaneous melanoma genome-wide association study dataset. Multivariate and stepwise Cox proportional hazards regression and false-positive report probability corrections were performed to evaluate associations between putative functional SNPs and cutaneous melanoma disease-specific survival. Receiver operating characteristic curve was constructed, and area under the curve was used to assess the classification performance of the model. RESULTS: Four putative functional SNPs of Notch pathway genes had independent and joint predictive roles in survival of cutaneous melanoma patients. The most significant variant was NCOR2 rs2342924 T>C (adjusted HR, 2.71; 95% confidence interval, 1.73-4.23; Ptrend = 9.62 × 10(-7)), followed by NCSTN rs1124379 G>A, NCOR2 rs10846684 G>A, and MAML2 rs7953425 G>A (Ptrend = 0.005, 0.005, and 0.013, respectively). The receiver operating characteristic analysis revealed that area under the curve was significantly increased after adding the combined unfavorable genotype score to the model containing the known clinicopathologic factors. CONCLUSIONS: Our results suggest that SNPs in Notch pathway genes may be predictors of cutaneous melanoma disease-specific survival. IMPACT: Our discovery offers a translational potential for using genetic variants in Notch pathway genes as a genotype score of biomarkers for developing an improved prognostic assessment and personalized management of cutaneous melanoma patients.