983 resultados para SNP- polymorphisme


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: T reatment o f chronic hepatitis C i s evolving, a nd direct acting antivirals ( DAAs) are now a dded to p egylated interferon-α ( Peg- INF-α) and ribavirin (RBV) for the treatment o f hepatitis C v irus ( HCV) genotype 1 infection. DAAs c ause d ifferent side effects and can even worsen RBV induced hemolytic anemia. T herefore, identifying host genetic d eterminants of R BV bioavailability and therapeutic e fficacy will remain crucial for individualized treatment. Recent d ata showed associations between R BV induced h emolytic anemia and genetic polymorphisms o f concentrative nucleoside transporters s uch as C NT3 (SLC28A3) and i nosine t riphosphatase (ITPA). T o analyze t he association of genetic variants of SLC28 transporters and ITPA with RBV induced hemolytic anemia and treatment o utcome. Methods: I n our study, 173 patients f rom t he S wiss Hepatitis C C ohort Study and 2 2 patients from Swiss Association for the Study of the Liver study 24 (61% HCV g enotype 1, 3 9% genotypes 2 o r 3) were analyzed for SLC28A2 single nucleotide p olymorphism (SNP) rs11854484, SLC28A3 rs56350726 and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101. RBV serum levels during treatment were measured in 49 patients. Results: SLC28A2 r s11854484 genotype TT was associated with significantly higher dosage- and body weight-adjusted RBV levels as compared to genotypes TC and CC (p=0.04 and p=0.02 at weeks 4 and 8, respectively). ITPA SNPs rs1127354 and rs7270101 were associated with h emolytic a nemia both in genotype as w ell as i n allelic a nalyses. SLC28A3 rs56350726 genotype TT (vs. AT/AA, RR=2.1; 95% CI 1.1-4.1) as well as the T allele (vs. A; RR=1.8, 95% CI 1.1-3.2) were associated with increased SVR rates. The combined analysis of overall ITPA activity and SLC28 v ariants together revealed n o significant a dditive effects on either treatment-related anemia or SVR. Conclusions: T he newly identified association between RBV serum levels a nd SLC28A2 rs11854484 genotype as well as the replicated association of ITPA and SLC28A3 g enetic p olymorphisms w ith RBV induced hemolytic anemia and treatment r esponse underpin the need for further studies on host genetic d eterminants of R BV bioavailability and therapeutic e fficacy f or individualized treatment of chronic hepatitis C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Several susceptibility genes for type 2 diabetes have been discovered recently. Individually, these genes increase the disease risk only minimally. The goals of the present study were to determine, at the population level, the risk of diabetes in individuals who carry risk alleles within several susceptibility genes for the disease and the added value of this genetic information over the clinical predictors. METHODS: We constructed an additive genetic score using the most replicated single-nucleotide polymorphisms (SNPs) within 15 type 2 diabetes-susceptibility genes, weighting each SNP with its reported effect. We tested this score in the extensively phenotyped population-based cross-sectional CoLaus Study in Lausanne, Switzerland (n = 5,360), involving 356 diabetic individuals. RESULTS: The clinical predictors of prevalent diabetes were age, BMI, family history of diabetes, WHR, and triacylglycerol/HDL-cholesterol ratio. After adjustment for these variables, the risk of diabetes was 2.7 (95% CI 1.8-4.0, p = 0.000006) for individuals with a genetic score within the top quintile, compared with the bottom quintile. Adding the genetic score to the clinical covariates improved the area under the receiver operating characteristic curve slightly (from 0.86 to 0.87), yet significantly (p = 0.002). BMI was similar in these two extreme quintiles. CONCLUSIONS/INTERPRETATION: In this population, a simple weighted 15 SNP-based genetic score provides additional information over clinical predictors of prevalent diabetes. At this stage, however, the clinical benefit of this genetic information is limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on (1)H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10(-8)) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10(-44)) and lysine (rs8101881, P = 1.2×10(-33)), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CYP3A4, CYP3A5 and CYP3A7 are hepatic enzymes that metabolize about 50% of drugs on the market, with a large overlap in their specificities. We investigated the genetic bases that contribute to the variation of CYP3A activity. We phenotyped 251 individuals from two independent studies (182 patients treated with methadone and 69 patients with clozapine) for CYP3A activity using the midazolam phenotyping test and genotyped them for CYP3A4, CYP3A5, and CYP3A7 genetic variants, including the single nucleotide polymorphism (SNP) rs4646437C>T in intron 7 of CYP3A4. Owing to the fact that CYP enzymes require electron transfer through the P450 oxidoreductase (POR), and functional impairment has been shown for the POR*28 SNP, this polymorphism was also analysed. We show that CYP3A4, CYP3A5 and CYP3A7 genotypes, including the SNP rs4646437C>T, do not reflect the inter-individual variability of CYP3A activity (P>0.1). In contrast, POR*28 TT genotype presents a 1.6-fold increase in CYP3A activity compared with POR*28C carriers (n = 182, P = 0.004). This finding was replicated in the second independent dataset (n = 69, P = 0.04). The SNP POR*28 seems to be a better genetic marker of the variability of total CYP3A activity in vivo than CYP3A4, CYP3A5 and CYP3A7 genetic variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or "wet" Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. METHODS: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with "wet" AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8(+/-) mice expressing ß-galactosidase. Aged Mfge8(+/-) and Mfge8(-/-) mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. RESULTS: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8(-/-) mice as compared to controls. CONCLUSIONS: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8(-/-) mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary : Internal ribosome entry sites (IRES) are used by viruses as a strategy to bypass inhibition of cap-dependent translation that commonly results from viral infection. IRES are also used in eukaryotic cells to control mRNA translation under conditions of cellular stress (apoptosis, heat shock) or during the G2 phase of the cell cycle when general protein synthesis is inhibited. Variation in cellular expression levels has been shown to be inherited. Expression is controlled, among others, by transcriptional factors and by the efficiency of cap-mediated translation and ribosome activity. We aimed at identifying genomic determinants of variability in IRES-mediated translation of two representative IRES [Encephalomyocarditis virus (EMCV) and X-linked Inhibitor-of-Apoptosis (XIAP) IRES]. We used bicistronic lentiviral constructions expressing two fluorescent reporter transgenes. Lentiviruses were used to transduce seven different laboratory cell lines and B lymphoblastoid cell lines from the Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209); representing an in vitro approach to family structure allowing genome scan analyses. The relative expression of the two markers was assessed by FACS. IRES efficiency varies according to cellular background, but also varies, for a same cell type, among individuals. The control of IRES activity presents an inherited component (h2) of 0.47 and 0.36 for EMCV and XIAP IRES, respectively. A genome scan identified a suggestive Quantitative Trait Loci (LOD 2.35) involved in the control of XIAP IRES activity. Résumé : Les sites internes d'entrée des ribosomes (IRES = internal ribosome entry sites) sont utilisés par les virus comme une stratégie afin d'outrepasser l'inhibition de traduction qui résulte communément d'une infection virale. Les IRES sont également utilisés par les cellules eucaryotes pour contrôler la traduction de l'ARN messager dans des conditions de stress cellulaire (apoptose, choc thermique) ou durant la phase G2 du cycle cellulaire, situations durant lesquelles la synthèse générale des protéines est inhibée. La variation des niveaux d'expression cellulaire de transcription est un caractère héréditaire. L'expression des gènes est contrôlée entre autre par les facteurs de transcription et par l'efficacité de la traduction initiée par la coiffe ainsi que par l'activité des ribosomes. Durant cette étude nous avons eu pour but d'identifier les déterminants génomiques responsables de la variabilité de la traduction contrôlée par l'IRES. Ceci a été effectué en étudiant deux IRES représentatifs : l'IRES du virus de l'encéphalomyocardite (EMCV) et l'IRES de l'inhibiteur de l'apoptose XIAP (X-linked Inhibitor-of-Apoptosis). Nous avons utilisés des lentivirus délivrant un transgène bicistronique codant pour deux gènes rapporteurs fluorescents. Ces lentivirus ont été utilisés pour transduire sept différentes lignées cellulaires de laboratoire et des lignées cellulaires lymphoblastoïdes B du Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209) qui représentent une approche in vitro de la structure familiale et qui permettent des analyses par balayage du génome. L'expression relative des deux marqueurs fluorescents a été analysée par FACS. Nos résultats montrent que l'efficacité des IRES varie en fonction du type de cellules. Il varie aussi, pour le même type de cellules, selon les individus. Le contrôle de l'activité de l'IRES est un caractère héritable (héritabilité h2) de 0.47 et 0.36 pour les IRES de EMCV et XIAP respectivement. Le balayage du génome a permis l'identification d'un locus à effets quantitatifs [QTL Quantitative Trait Loci (LOD 2.35)] impliqué dans le contôle de l'activité de l'IRES de XIAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La recherche biomédicale profite de plus en plus au développement des techniques de séquençage et d'analyse de l'ADN. Les coûts du séquençage ont drastiquement baissés au cours de ces dernières années et les genomes-wides associations studies (GWAS) ont révolutionné l'approche de la recherche génétique en mettant en évidence associations et single-nucleotide-polymorphisms (SNPs) qui pourraient être importantes pour la susceptibilité à développer des maladies dites communes. La majorité des cancers appartiennent à cette définition de maladie commune, ils sont généralement causés par une accumulation de lésions/mutations de l'ADN aboutissant à une perte de contrôle de la prolifération et du cycle cellulaire. Ces mutations peuvent être héréditaires, acquises ou une combinaison des deux. Dans la plupart des cancers communs (cancers qui n'ont pas une hérédité familiale importante) les mutations de l'ADN sont souvent amenées par des facteurs tels que inflammation chronique, tabac, virus, exposition aux radiations, aux agents chimiques. Ceci est le cas pour le mélanome également, un cancer de la peau qui est corrélé à l'exposition des rayons UV solaires ou artificiels. Une hypothèse largement acceptée aujourd'hui est que les tumeurs, à travers leur accumulation progressive de mutations somatiques et d'anomalies chromosomiques, finissent par échapper au contrôle exercé par le système immunitaire. Il est par conséquence imaginable que des polymorphismes naturels puissent renforcer ou affaiblir la capacité du système immunitaire à freiner voir arrêter la progression tumorale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims: Recently, single nucleotide polymorphisms (SNPs) in IL28B were shown to correlate with response to pegylated interferon-a (IFN) and ribavirin therapy of chronic HCV infection. However, the cause for the SNPs effect on therapy response and its application for direct anti-viral (DAV) treatment are not clear. Here, we analyze early HCV kinetics as function of IL28B SNPs to determine its specific effect on viral dynamics. Methods: IL28B SNPs rs8099917, rs12979860 and rs12980275 were genotyped in 252 chronically HCV infected Caucasian naïve patients (67% HCV genotype 1, 28% genotype 2-3) receiving peginterferonalfa- 2a (180 mg/qw) plus ribavirin (1000-1200 mg/qd) in the DITTO study. HCV-RNA was measured (LD = 50 IU/ml) frequently during first 28 days. Results: RVR was achieved in 33% of genotype 1 patients with genotype CC at rs12979860 versus 12-16% for genotypes TT and CT (P < 0.03). Significant (P < 0.001) difference in viral decline was observed already at day 1 (see Figure). First phase decline was significantly (P < 0.001) larger in patients with genotype CC (2.0 log) than for TT and CT genotypes (0.6 and 0.8), indicating IFN anti-viral effectiveness in blocking virion production of 99% versus 75-84%. There was no significant association between second phase slope and rs12979860 genotype in patients with a first phase decline larger than 1 log. HCV kinetics as function of IL28b SNP. The same trend (not shown) was observed for HCV genotype 2-3 patients with different SNP genotype distribution that may indicate differential selection pressure as function of HCV genotype. Similar results were observed for SNPs rs8099917 and rs12980275, with a strong linkage disequilibrium among the 3 loci allowing to define the composite haplotype best associated with IFN effectiveness. Conclusions: IFN effectiveness in blocking virion production/ release is strongly affected by IL28B SNPs, but not other viral dynamic properties such as infected cell loss rate. Thus, IFN based therapy, as standard-of-care or in combination with DAV, should consider IL28B SNPs for prediction and personalized treatment, while response to pure DAV treatment may be less affected by IL28B SNPs. Additional analyses are undergoing to pinpoint the SNP effect on IFN anti-viral effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ∼2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands' CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of curative radiotherapy depends mainly on the total dose delivered homogenously in the targeted volume. Nevertheless, the dose delivered to the surrounding healthy tissues may reduce the therapeutic ratio of many radiation treatments. Two different side effects (acute and late) can occur during and after radiotherapy. Of particular interest are the radiation-induced sequelae due to their irreversibility and the potential impact on daily quality of life. In a same population treated in one centre with the same technique, it appears that individual radiosensitivity clearly exists. In the hypothesis that genetic is involved in this area of research, lymphocytes seem to be the tissue of choice due to easy accessibility. Recently, low percentage of CD4 and CD8 lymphocyte apoptosis were shown to be correlated with high grade of sequelae. In addition, recent data suggest that patients with severe radiation-induced late side effects possess four or more single nucleotide polymorphisms (SNP) in candidate genes (ATM, SOD2, TGFB1, XRCC1, and XRCC3) and low radiation-induced CD8 lymphocyte apoptosis in vitro. On-going studies are being analyzing the entire genome using a Genome-wide association study (GWAS) analysis.