981 resultados para SENSITIVE DETERMINATION
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume.
Resumo:
A high-resolution study of palaeoceanographic changes off North Iceland during the time period 8600-5200 cal year BP is based on benthic and planktonic foraminiferal assemblages. The core material (MD99-2275) was obtained from about 440 m water depth on the eastern part of the North Icelandic shelf. Changes in the faunal composition are interpreted to be mainly caused by variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current, which have been shown to be linked to the climatic changes in the North Atlantic region. Environmental proxies at that site are particularly sensitive to palaeoceanographic changes due to its position close to the marine Polar Front. Benthic assemblages show that relatively cold conditions prevailed at the base of the record. An increase in the influence of Atlantic water masses at the sea floor is seen at around 8400 cal year BP, whereas the surface waters were relatively warm already at 8600 cal year BP. The warming was interrupted by a cold event at around 8100-8000 cal year BP, registered both in the bottom and surface waters and correlated with the so-called 8.2 kyr cooling event. Both the benthic and the planktonic faunal compositions indicate that the Irminger Current had maximum influence in the area between 8000 and about 7300 cal year BP, followed by a gradually decreasing influence through the remaining part of the studied time interval. It is suggested that the contribution of Atlantic water masses from the east and north-east to the Arctic Surface waters off North Iceland increased after around 7000 cal year BP, and that this was further intensified after 6200 cal year BP. At present, the Arctic Surface Water north of Iceland consists of Polar waters, intermittently with direct influence from the East Greenland Current, mixed with Atlantic waters derived from the eastern part of the Nordic Seas. A comparison of the mean values of selected environmental proxies in the interval 8600-5200 cal year BP with the upper part of the same core shows that the water masses north of Iceland were considerably warmer during the Holocene thermal maximum than during the last 2000 cal year. In general, results from core MD99-2275 are in accordance with other marine records from the North Icelandic shelf and the northern North Atlantic region, although a detailed comparison on a centennial time scale is hampered by problems with spatial as well as temporal changes in the marine reservoir ages in the region.
Resumo:
A rapid, economic and sensitive chemiluminescent method involving flow-injection analysis was developed for the determination of dipyrone in pharmaceutical preparations. The method is based on the chemiluminescent reaction between quinolinic hydrazide and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. Principal chemical and physical variables involved in the flow-injection system were optimized using a modified simplex method. The variations in the quantum yield observed when dipyrone was present in the reaction medium were used to determine the concentration of this compound. The proposed method requires no preconcentration steps and reliably quantifies dipyrone over the linear range 1–50 µg/mL. In addition, a sample throughput of 85 samples/h is possible. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Ionoluminescence (IL) has been used in this work as a sensitive tool to probe the microscopic electronic processes and structural changes produced on quartz by the irradiation with swift heavy ions. The IL yields have been measured as a function of irradiation fluence and electronic stopping power. The results are consistent with the assignment of the 2.7 eV (460 nm) band to the recombination of self-trapped excitons at the damaged regions in the irradiated material. Moreover, it was possible to determine the threshold for amorphization by a single ion impact, as 1:7 keV/nm, which agrees well with the results of previous studies.
Resumo:
The coach is central to the development of expertise in sport (Bloom, 1985) and is subsequently key to facilitating adaptive forms of motivation to enhance the quality of sport performance (Mallett & Hanrahan, 2004). In designing optimal training environments that are sensitive to the underlying motives of athletes, the coach requires an in-depth understanding of motivation. This paper reports on the application of self-determination theory (SDT; Deci & Ryan, 1985; Ryan & Deci, 2000) to coaching elite athletes. Specifically, the application of SDT to designing an autonomy-supportive motivational climate is outlined, which was used in preparing Australia's two men's relay teams for the 2004 Olympic Games in Athens.
Resumo:
Conventional bioimpedance spectrometers measure resistance and reactance over a range of frequencies and, by application of a mathematical model for an equivalent circuit (the Cole model), estimate resistance at zero and infinite frequencies. Fitting of the experimental data to the model is accomplished by iterative, nonlinear curve fitting. An alternative fitting method is described that uses only the magnitude of the measured impedances at four selected frequencies. The two methods showed excellent agreement when compared using data obtained both from measurements of equivalent circuits and of humans. These results suggest that operational equivalence to a technically complex, frequency-scanning, phase-sensitive BIS analyser could be achieved from a simple four-frequency, impedance-only analyser.
Resumo:
This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 µM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells. © 2011 American Chemical Society.
Resumo:
Lipid peroxidation is recognized to be an important contributor to many chronic diseases, especially those of an inflammatory pathology. In addition to their value as markers of oxidative damage, lipid peroxidation products have also been shown to have a wide variety of biological and cell signalling effects. In view of this, accurate and sensitive methods for the measurement of lipid peroxidation products are essential. Although some assays have been described for many years, improvements in protocols are continually being reported and, with recent advances in instrumentation and technology, highly specialized and informative techniques are increasingly used. This article gives an overview of the most currently used methods and then addresses the recent advances in some specific approaches. The focus is on analysis of oxysterols, F(2)-isoprostanes and oxidized phospholipids by gas chromatography or liquid chromatography mass spectrometry techniques and immunoassays for the detection of 4-hydroxynonenal.
Resumo:
An HPLC method has been developed and validated for the rapid determination of mercaptopurine and four of its metabolites; thioguanine, thiouric acid, thioxanthine and methylmercaptopurine in plasma and red blood cells. The method involves a simple treatment procedure based on deproteinisation by perchloric acid followed by acid hydrolysis and heating for 45min at 100 degrees C. The developed method was linear over the concentration range studied with a correlation coefficient >0.994 for all compounds in both plasma and erythrocytes. The lower limits of quantification were 13, 14, 3, 2, 95pmol/8 x 10(8) RBCs and 2, 5, 2, 3, 20ng/ml plasma for thioguanine, thiouric acid, mercaptopurine, thioxanthine and methylmercaptopurine, respectively. The method described is selective and sensitive enough to analyse the different metabolites in a single run under isocratic conditions. Furthermore, it has been shown to be applicable for monitoring these metabolites in paediatric patients due to the low volume requirement (200microl of plasma or erythrocytes) and has been successfully applied for investigating population pharmacokinetics, pharmacogenetics and non-adherence to therapy in these patients.
Resumo:
Background Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods (offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose in environmental samples. Results An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water, drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (<20%) was observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with molecular formula C12H20Cl2O8. Conclusions Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental samples. Sucralose was frequently detected (>80%) indicating that the conventional treatment process employed in the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer of anthropogenic wastewater intrusion into the environment.
Resumo:
Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene were performed on the basis of high-resolution records of ice rafted debris (IRD), CaCO3, opal, total organic carbon (TOC), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen - isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling -Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicate an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS were mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4-6 ka ago simultaneously with a remarkable decrease of sea ice cover.
Resumo:
The volcanogenic lake Laguna Potrok Aike, Santa Cruz, Argentina, reveals an unprecedented continuous high resolution climatic record for the steppe regions of southern Patagonia. With the applied multi-proxy approach rapid climatic changes before the turn of the first millennium were detected followed by medieval droughts which are intersected by moist and/or cold periods of varying durations and intensities. The 'total inorganic carbon' content was identified as a sensitive lake level indicator. This proxy suggests that during the late Middle Ages (ca. AD 1230-1410) the lake level was rather low representing a signal of the 'Medieval Climate Anomaly' in southeastern Patagonia. At the beginning of the 'Little Ice Age' the lake level rose considerably staying on a high level during the whole period. Subsequently, the lake level lowered again in the course of the 20th century.
Resumo:
The presence of harmful algal blooms (HAB) is a growing concern in aquatic environments. Among HAB organisms, cyanobacteria are of special concern because they have been reported worldwide to cause environmental and human health problem through contamination of drinking water. Although several analytical approaches have been applied to monitoring cyanobacteria toxins, conventional methods are costly and time-consuming so that analyses take weeks for field sampling and subsequent lab analysis. Capillary electrophoresis (CE) becomes a particularly suitable analytical separation method that can couple very small samples and rapid separations to a wide range of selective and sensitive detection techniques. This paper demonstrates a method for rapid separation and identification of four microcystin variants commonly found in aquatic environments. CE coupled to UV and electrospray ionization time-of-flight mass spectrometry (ESI-TOF) procedures were developed. All four analytes were separated within 6 minutes. The ESI-TOF experiment provides accurate molecular information, which further identifies analytes.
Resumo:
Tetrodotoxin (TTX) is a low molecular weight and potent marine neurotoxin which is usually present in some species of puffer fish. TTX selectively binds to voltage-sensitive sodium channels (VSGCs), blocking the influx of sodium into the cell and affecting neural transmission. The bioaccumulation of this toxin in seafood can poses a risk to human safety. With the purpose of achieving cheap, specific and reliable tools to determine TTX in puffer fish samples, a self-assembled dithiol-based immunoassay, an electrochemical immunosensor and an optical Surface Plasmon Resonance (SPR) immunosensor are proposed. The immunoassay for TTX based on the use of dithiols self-assembled on maleimide-plates (mELISA) has been able to detect as low as 2.28 μg/L of TTX. The effect of different puffer fish matrixes on this mELISA has been quantified and the corresponding correction factors have been established. This
mELISA has enabled to establish the cross-reactivity factors for four TTX analogues: 5,6,11-trideoxy-TTX, 5,6,11-trideoxy-4-anhydro-TTX, 11-nor-TTX-6-ol and 5,11-deoxy-TTX. The crossreactivity factors have also been established by the optical SPR immunosensor previously reported, which had a limit of detection (LOD) of 4.27 μg/L. The mELISA and the SPR immunosensor have then been tested with spiked-puffer fish matrixes, providing an effective
LOD of 0.23 and 0.43 mg/kg respectively, well below the limit set in Japan (2 mg/kg). The mELISA and the SPR immunosensor have also been applied to the analysis of naturally contaminated puffer fish samples, providing similar TTXs contents between techniques and also compared to LC-MS/MS. The suitability of these immunochemical techniques has been demonstrated not only for screening purposes, but also for research activities. Currently, given that dithiols could improve the electron transfer and the sensitivity of an electrochemical assay, the mELISA strategy is being transferred to gold electrodes for the electrochemical detection of TTX and the subsequent development of the multiplexed electrochemical immunosensor.