837 resultados para SELF-ASSEMBLY METHOD


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In molecular biology, the expression of fusion proteins is a very useful and well-established technique for the identification and one-step purification of gene products. Even a short fused sequence of five or six histidines enables proteins to bind to an immobilized metal ion chelate complex. By synthesis of a class of chelator lipids, we have transferred this approach to the concept of self-assembly. The specific interaction and lateral organization of a fluorescent fusion molecule containing a C-terminal oligohistidine sequence was studied by film balance techniques in combination with epifluorescence microscopy. Due to the phase behavior of the various lipid mixtures used, the chelator lipids can be laterally structured, generating two-dimensional arrays of histidine-tagged biomolecules. Because of the large variety of fusion proteins already available, this concept represents a powerful technique for orientation and organization of proteins at lipid interfaces with applications in biosensing, biofunctionalization of nanostructured interfaces, two-dimensional crystallization, and studies of lipid-anchored proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tese apresenta uma abordagem para a criação rápida de modelos em diferentes geometrias (complexas ou de alta simetria) com objetivo de calcular a correspondente intensidade espalhada, podendo esta ser utilizada na descrição de experimentos de es- palhamento à baixos ângulos. A modelagem pode ser realizada com mais de 100 geome- trias catalogadas em um Banco de Dados, além da possibilidade de construir estruturas a partir de posições aleatórias distribuídas na superfície de uma esfera. Em todos os casos os modelos são gerados por meio do método de elementos finitos compondo uma única geometria, ou ainda, compondo diferentes geometrias, combinadas entre si a partir de um número baixo de parâmetros. Para realizar essa tarefa foi desenvolvido um programa em Fortran, chamado de Polygen, que permite modelar geometrias convexas em diferentes formas, como sólidos, cascas, ou ainda com esferas ou estruturas do tipo DNA nas arestas, além de usar esses modelos para simular a curva de intensidade espalhada para sistemas orientados e aleatoriamente orientados. A curva de intensidade de espalhamento é calculada por meio da equação de Debye e os parâmetros que compõe cada um dos modelos, podem ser otimizados pelo ajuste contra dados experimentais, por meio de métodos de minimização baseados em simulated annealing, Levenberg-Marquardt e algorítmicos genéticos. A minimização permite ajustar os parâmetros do modelo (ou composição de modelos) como tamanho, densidade eletrônica, raio das subunidades, entre outros, contribuindo para fornecer uma nova ferramenta para modelagem e análise de dados de espalhamento. Em outra etapa desta tese, é apresentado o design de modelos atomísticos e a sua respectiva simulação por Dinâmica Molecular. A geometria de dois sistemas auto-organizado de DNA na forma de octaedro truncado, um com linkers de 7 Adeninas e outro com linkers de ATATATA, foram escolhidas para realizar a modelagem atomística e a simulação por Dinâmica Molecular. Para este sistema são apresentados os resultados de Root Mean Square Deviations (RMSD), Root Mean Square Fluctuations (RMSF), raio de giro, torção das hélices duplas de DNA além da avaliação das ligações de Hidrogênio, todos obtidos por meio da análise de uma trajetória de 50 ns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Substances containing unpaired electrons have been studied by electron paramagnetic resonance (EPR) for nearly 70 years. With continual development and enhancement of EPR techniques, questions have arisen regarding optimum method selection for a given sample based on its properties. In this work, radiation defects, natural lattice defects, solid organic radicals, radicals in solution, and spin-labeled proteins were analyzed using CW, pulse, and rapid scan EPR to compare methods. Studies of solid BDPA, EOe in quartz, Ns0 in diamond, and a-Si:H, showed that rapid scan could overcome many obstacles presented by other techniques, cementing rapid scan as an effective alternative to CW and pulse methods. Relaxation times of six nitroxide radicals were characterized from 0.25-34 GHz, guiding synthesis of improved nitroxides for in vivo imaging experiments. Processes contributing to T1 of DPPH in polystyrene were found through variable temperature measurements at X- and Q-band, resolving previously-reported discrepancies in relaxation properties and providing new insight into this commonly-used standard. In the history of EPR, the study of proteins is relatively new. Double electron-electron resonance (DEER) has emerged as a powerful technique for the study of amyloid fibrils, a class of protein aggregates implicated in a number of neurodegenerative disorders. Microtubule-associated protein tau forms fibrils linked to Alzheimerfs disease through seeded conversion of monomer. Self-assembly is mediated by the microtubule binding repeats in tau, and there are either three or four repeats present depending on the isoform. DEER was used to show that filaments of 3R and 4R tau are conformationally distinct and that 4R fibrils adopt a heterogeneous mixture of conformations. Populations of 4R fibril conformations, which were independently validated using a model system, can be modulated by introduction of mutations to the primary sequence or by varying fibril growth conditions. These findings provided unprecedented insights into the seed selection of tau monomers and established conformational compatibility as an important driving force in tau fibril propagation. Lastly, DEER acquisition was improved through addition of paramagnetic metal to spin-labeled protein, decreasing collection time, and through use of a novel spin label with increased T2, thereby lengthening the available acquisition window.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol-gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore - composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol-gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a new approach to produce macroporous (110 nm in diameter) ordered siliceous foams (MOSF) by using block copolymers as templates in the absence of any organic cosolvent. The fine three-dimensional honeycomb structure of MOSF was determined by electron tomography. A formation mechanism of MOSF that spans from the atomic to macroscopic scale is proposed, which involves the cooperative self-assembly of unilamellar vesicles followed by the supra-assembly of vesicles. The fusion of soft vesicles finally leads to MOSF with well-ordered and defined honeycomb structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-assembly of cobalt coordination frameworks (Co-CPs) with a two-dimensional morphology is demonstrated by a solvothermal method. The morphology of the Co-CPs has been controlled by various solvothermal conditions. The two-dimensional nanostructures agglomerated by Co3O4 nanoparticles remained after the pyrolysis of the Co-CPs. The as-synthesized Co3O4 anode material is characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements. The morphology of Co3O4 plays a crucial role in the high performance anode materials for lithium batteries. The Co3O4 nanoparticles with opened-book morphology deliver a high capacity of 597 mA h g-1 after 50 cycles at a current rate of 800 mA g-1. The opened-book morphology of Co3O4 provides efficient lithium ion diffusion tunnels and increases the electrolyte/Co3O4 contact/interfacial area. At a relatively high current rate of 1200 mA g-1, Co3O4 with opened-book morphology delivers an excellent rate capability of 574 mA h g-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxide (ATSB), synthesis reproducibility, role of nonvolatile acids, and the crystallization and thermal stability of the crystalline counterparts. Mesophase specific surface area and pore uniformity depend notably on the solvent; s-BuOH yields the highest surface area and pore uniformity. The optimal mesophase synthesis is reproducible with standard deviations in the textural parameters below 5%. The most pore-uniform mesophases from the three solvents were thermally activated at 1023 K to crystallize them into γ-alumina. The s-BuOH mesophase is remarkably thermally stable, retaining the mesoscopic wormhole order with 300 m2/g (0.45 cm3/g) and an increased acidic site density. These features are not obtained with EtOH or t-BuOH, where agglomerated γ-Al2O3 crystallites are formed with lower surface areas and broader pore size distributions. This was rationalized by the increase of the hydrolysis rate using EtOH and t-BuOH. t-BuOH dehydrates under the synthesis conditions or reacts with HCl, situations that increase the water concentration and rate of hydrolysis. It was found that EtOH exchanges rapidly, producing a highly reactive Al-ethoxide, thus enhancing the hydrolysis rate as well. Particle heterogeneity with random packing of fibrous and wormhole morphologies, attributed to the high hydrolysis rate, was observed for mesophases derived from both solvents. Such a low particle coordination favors coarsening with enlargement of the pore size distribution upon thermal treatment, explaining the lower thermal stability. Controlled hydrolysis and formation of low-polymerized Al species in s-BuOH are possibly responsible for the adequate assembly onto the surfactant. This was verified by the formation of a regular distribution of relatively size-uniform nanoparticles in the mesophase; high particle coordination prevents coarsening, favors densification, and maintains a relatively uniform pore size distribution upon thermal treatment. The acid removal in the evaporation is another key factor to promote network condensation in this route. © 2013 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the results of a study into the quality of functionalized surfaces for nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent post-etch pattern definition and minimum feature size all depend on the quality of the Au substrate used in atomic nanolithographic experiments. We find sputtered Au substrates yield much smoother surfaces and a higher density of {111} oriented grains than evaporated Au surfaces. A detailed study of the self-assembly mechanism using molecular resolution AFM and STM has shown that the monolayer is composed of domains with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. Exposure of the SAM to an optically-cooled atomic Cs beam traversing a two-dimensional array of submicron material masks ans also standing wave optical masks allowed determination of the minimum average Cs dose (2 Cs atoms per SAM molecule) and the realization of < 50 nm structures. The SAM monolayer contains many non-uniformities such as pin-holes, domain boundaries and monoatomic depressions which are present in the Au surface prior to SAM adsorption. These imperfections limit the use of alkanethiols as a resist in atomic nanolithography experiments. These studies have allowed us to realize an Atom Pencil suitable for deposition of precision quantities of material at the microand nanoscale to an active surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cs atom beams, transversely collimated and cooled, passing through material masks in the form of arrays of reactive-ion-etched hollow Si pyramidal tips and optical masks formed by intense standing light waves, write submicron features on self-assembled monolayers (SAMs). Features with widths as narrow as 43 ± 6 nm and spatial resolution limited only by the grain boundaries of the substrate have been realized in SAMs of alkanethiols. The material masks write two-dimensional arrays of submicron holes; the optical masks result in parallel lines spaced by half the optical wavelength. Both types of feature are written to the substrate by exposure of the masked SAM to the Cs flux and a subsequent wet chemical etch. For the arrays of pyramidal tips, acting as passive shadow masks, the resolution and size of the resultant feature depends on the distance of the mask array from the SAM, an effect caused by the residual divergence of the Cs atom beam. The standing wave optical mask acts as an array of microlenses focusing the atom flux onto the substrate. Atom 'pencils' writing on SAMs have the potential to create arbitrary submicron figures in massively parallel arrays. The smallest features and highest resolutions were realized with SAMs grown on smooth, sputtered gold substrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the results of a study into the factors controlling the quality of nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent postetch pattern definition, and minimum feature size all depend on the quality of the Au substrate used in material mask atomic nanolithographic experiments. We find that sputtered Au substrates yield much smoother surfaces and a higher density of {111}-oriented grains than evaporated Au surfaces. Phase imaging with an atomic force microscope shows that the quality and percentage coverage of SAM adsorption are much greater for sputtered Au surfaces. Exposure of the self-assembled monolayer to an optically cooled atomic Cs beam traversing a two-dimensional array of submicron material masks mounted a few microns above the self-assembled monolayer surface allowed determination of the minimum average Cs dose (2 Cs atoms per self-assembled monolayer molecule) to write the monolayer. Suitable wet etching, with etch rates of 2.2 nm min-1, results in optimized pattern definition. Utilizing these optimizations, material mask features as small as 230 nm in diameter with a fractional depth gradient of 0.820 nm were realized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of {111} oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 × 2) superlattice structure is observed as a (3 × 2√3) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au{111} lattice and aligned along its lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of ∼20 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of DNA as a polymeric building material transcends its function in biology and is exciting in bionanotechnology for applications ranging from biosensing, to diagnostics, and to targeted drug delivery. These applications are enabled by DNA’s unique structural and chemical properties, embodied as a directional polyanion that exhibits molecular recognition capabilities. Hence, the efficient and precise synthesis of high molecular weight DNA materials has become key to advance DNA bionanotechnology. Current synthesis methods largely rely on either solid phase chemical synthesis or template-dependent polymerase amplification. The inherent step-by-step fashion of solid phase synthesis limits the length of the resulting DNA to typically less than 150 nucleotides. In contrast, polymerase based enzymatic synthesis methods (e.g., polymerase chain reaction) are not limited by product length, but require a DNA template to guide the synthesis. Furthermore, advanced DNA bionanotechnology requires tailorable structural and self-assembly properties. Current synthesis methods, however, often involve multiple conjugating reactions and extensive purification steps.

The research described in this dissertation aims to develop a facile method to synthesize high molecular weight, single stranded DNA (or polynucleotide) with versatile functionalities. We exploit the ability of a template-independent DNA polymerase−terminal deoxynucleotidyl transferase (TdT) to catalyze the polymerization of 2’-deoxyribonucleoside 5’-triphosphates (dNTP, monomer) from the 3’-hydroxyl group of an oligodeoxyribonucleotide (initiator). We termed this enzymatic synthesis method: TdT catalyzed enzymatic polymerization, or TcEP.

Specifically, this dissertation is structured to address three specific research aims. With the objective to generate high molecular weight polynucleotides, Specific Aim 1 studies the reaction kinetics of TcEP by investigating the polymerization of 2’-deoxythymidine 5’-triphosphates (monomer) from the 3’-hydroxyl group of oligodeoxyribothymidine (initiator) using in situ 1H NMR and fluorescent gel electrophoresis. We found that TcEP kinetics follows the “living” chain-growth polycondensation mechanism, and like in “living” polymerizations, the molecular weight of the final product is determined by the starting molar ratio of monomer to initiator. The distribution of the molecular weight is crucially influenced by the molar ratio of initiator to TdT. We developed a reaction kinetics model that allows us to quantitatively describe the reaction and predict the molecular weight of the reaction products.

Specific Aim 2 further explores TcEP’s ability to transcend homo-polynucleotide synthesis by varying the choices of initiators and monomers. We investigated the effects of initiator length and sequence on TcEP, and found that the minimum length of an effective initiator should be 10 nucleotides and that the formation of secondary structures close to the 3’-hydroxyl group can impede the polymerization reaction. We also demonstrated TcEP’s capacity to incorporate a wide range of unnatural dNTPs into the growing chain, such as, hydrophobic fluorescent dNTP and fluoro modified dNTP. By harnessing the encoded nucleotide sequence of an initiator and the chemical diversity of monomers, TcEP enables us to introduce molecular recognition capabilities and chemical functionalities on the 5’-terminus and 3’-terminus, respectively.

Building on TcEP’s synthesis capacities, in Specific Aim 3 we invented a two-step strategy to synthesize diblock amphiphilic polynucleotides, in which the first, hydrophilic block serves as a macro-initiator for the growth of the second block, comprised of natural and/or unnatural nucleotides. By tuning the hydrophilic length, we synthesized the amphiphilic diblock polynucleotides that can self-assemble into micellar structures ranging from star-like to crew-cut morphologies. The observed self-assembly behaviors agree with predictions from dissipative particle dynamics simulations as well as scaling law for polyelectrolyte block copolymers.

In summary, we developed an enzymatic synthesis method (i.e., TcEP) that enables the facile synthesis of high molecular weight polynucleotides with low polydispersity. Although we can control the nucleotide sequence only to a limited extent, TcEP offers a method to integrate an oligodeoxyribonucleotide with specific sequence at the 5’-terminus and to incorporate functional groups along the growing chains simultaneously. Additionally, we used TcEP to synthesize amphiphilic polynucleotides that display self-assemble ability. We anticipate that our facile synthesis method will not only advance molecular biology, but also invigorate materials science and bionanotechnology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fabrication of nanoscale patterns through the bottom-up approach of self-assembly of phase-separated block copolymers (BCP) holds promise for nanoelectronics applications. For lithographic applications, it is useful to vary the morphology of BCPs by monitoring various parameters to make “from lab to fab” a reality. Here I report on the solvent annealing studies of lamellae forming polystyrene-blockpoly( 4-vinylpyridine) (PS-b-P4VP). The high Flory-Huggins parameter (χ = 0.34) of PS-b-P4VP makes it an ideal BCP system for self-assembly and template fabrication in comparison to other BCPs. Different molecular weights of symmetric PS-b-P4VP BCPs forming lamellae patterns were used to produce nanostructured thin films by spin-coating from mixture of toluene and tetrahydrofuran(THF). In particular, the morphology change from micellar structures to well-defined microphase separated arrangements is observed. Solvent annealing provides a better alternative to thermal treatment which often requires long annealing periods. The choice of solvent (single and dual solvent exposure) and the solvent annealing conditions have significant effects on the morphology of films and it was found that a block neutral solvent was required to realize vertically aligned PS and P4VP lamellae. Here, we have followed the formation of microdomain structures with time development at different temperatures by atomic force microscopy (AFM). The highly mobilized chains phase separate quickly due to high Flory-Huggins (χ) parameter. Ultra-small feature size (~10 nm pitch size) nanopatterns were fabricated by using low molecular weight PSb- P4VP (PS and P4VP blocks of 3.3 and 3.1 kg mol-1 respectively). However, due to the low etch contrast between the blocks, pattern transfer of the BCP mask is very challenging. To overcome the etch contrast problem, a novel and simple in-situ hard mask technology is used to fabricate the high aspect ratio silicon nanowires. The lamellar structures formed after self-assembly of phase separated PS-b-P4VP BCPs were used to fabricate iron oxide nanowires which acted as hard mask material to facilitate the pattern transfer into silicon and forming silicon nanostructures. The semiconductor and optical industries have shown significant interest in two dimensional (2D) molybdenum disulphide (MoS2) as a potential device material due to its low band gap and high mobility. However, current methods for its synthesis are not ‘fab’ friendly and require harsh environments and processes. Here, I also report a novel method to prepare MoS2 layered structures via self-assembly of a PS-b-P4VP block copolymer system. The formation of the layered MoS2 was confirmed by XPS, Raman spectroscopy and high resolution transmission electron microscopy.