954 resultados para Robotic navigation systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho de Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teaching robotics to students at the beginning of their studies has become a huge challenge. Simulation environments can be an effective solution to that challenge where students can interact with simulated robots and have the first contact with robotic constraints. From our previous experience with simulation environments it was possible to observe that students with lower background knowledge in robotics where able to deal with a limited number of constraints, implement a simulated robotic platform and study several sensors. The question is: after this first phase what should be the best approach? Should the student start developing their own hardware? Hardware development is a very important part of an engineer's education but it can also be a difficult phase that could lead to discouragement and loss of motivation in some students. Considering the previous constraints and first year engineering students’ high abandonment rate it is important to develop teaching strategies to deal with this problem in a feasible way. The solution that we propose is the integration of a low-cost standard robotic platform WowWee Rovio as an intermediate solution between the simulation phase and the stage where the students can develop their own robots. This approach will allow the students to keep working in robotic areas such as: cooperative behaviour, perception, navigation and data fusion. The propose approach proved to be a motivation step not only for the students but also for the teachers. Students and teachers were able to reach an agreement between the level of demand imposed by the teachers and satisfaction/motivation of the students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the TURTLE project that aim to develop sub-systems with the capability of deep-sea long-term presence. Our motivation is to produce new robotic ascend and descend energy efficient technologies to be incorporated in robotic vehicles used by civil and military stakeholders for underwater operations. TURTLE contribute to the sustainable presence and operations in the sea bottom. Long term presence on sea bottom, increased awareness and operation capabilities in underwater sea and in particular on benthic deeps can only be achieved through the use of advanced technologies, leading to automation of operation, reducing operational costs and increasing efficiency of human activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global Positioning System (GPS), with its high integrity, continuous availability and reliability, revolutionized the navigation system based on radio ranging. With four or more GPS satellites in view, a GPS receiver can find its location anywhere over the globe with accuracy of few meters. High accuracy - within centimeters, or even millimeters is achievable by correcting the GPS signal with external augmentation system. The use of satellite for critical application like navigation has become a reality through the development of these augmentation systems (like W AAS, SDCM, and EGNOS, etc.) with a primary objective of providing essential integrity information needed for navigation service in their respective regions. Apart from these, many countries have initiated developing space-based regional augmentation systems like GAGAN and IRNSS of India, MSAS and QZSS of Japan, COMPASS of China, etc. In future, these regional systems will operate simultaneously and emerge as a Global Navigation Satellite System or GNSS to support a broad range of activities in the global navigation sector.Among different types of error sources in the GPS precise positioning, the propagation delay due to the atmospheric refraction is a limiting factor on the achievable accuracy using this system. The WADGPS, aimed for accurate positioning over a large area though broadcasts different errors involved in GPS ranging including ionosphere and troposphere errors, due to the large temporal and spatial variations in different atmospheric parameters especially in lower atmosphere (troposphere), the use of these broadcasted tropospheric corrections are not sufficiently accurate. This necessitated the estimation of tropospheric error based on realistic values of tropospheric refractivity. Presently available methodologies for the estimation of tropospheric delay are mostly based on the atmospheric data and GPS measurements from the mid-latitude regions, where the atmospheric conditions are significantly different from that over the tropics. No such attempts were made over the tropics. In a practical approach when the measured atmospheric parameters are not available analytical models evolved using data from mid-latitudes for this purpose alone can be used. The major drawback of these existing models is that it neglects the seasonal variation of the atmospheric parameters at stations near the equator. At tropics the model underestimates the delay in quite a few occasions. In this context, the present study is afirst and major step towards the development of models for tropospheric delay over the Indian region which is a prime requisite for future space based navigation program (GAGAN and IRNSS). Apart from the models based on the measured surface parameters, a region specific model which does not require any measured atmospheric parameter as input, but depends on latitude and day of the year was developed for the tropical region with emphasis on Indian sector.Large variability of atmospheric water vapor content in short spatial and/or temporal scales makes its measurement rather involved and expensive. A local network of GPS receivers is an effective tool for water vapor remote sensing over the land. This recently developed technique proves to be an effective tool for measuring PW. The potential of using GPS to estimate water vapor in the atmosphere at all-weather condition and with high temporal resolution is attempted. This will be useful for retrieving columnar water vapor from ground based GPS data. A good network of GPS could be a major source of water vapor information for Numerical Weather Prediction models and could act as surrogate to the data gap in microwave remote sensing for water vapor over land.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seafloor imagery is a rich source of data for the study of biological and geological processes. Among several applications, still images of the ocean floor can be used to build image composites referred to as photo-mosaics. Photo-mosaics provide a wide-area visual representation of the benthos, and enable applications as diverse as geological surveys, mapping and detection of temporal changes in the morphology of biodiversity. We present an approach for creating globally aligned photo-mosaics using 3D position estimates provided by navigation sensors available in deep water surveys. Without image registration, such navigation data does not provide enough accuracy to produce useful composite images. Results from a challenging data set of the Lucky Strike vent field at the Mid Atlantic Ridge are reported

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypermedia systems based on the Web for open distance education are becoming increasingly popular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigational adaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is focused on the robot mobile platform PRIM (platform robot information multimedia). This robot has been made in order to cover two main needs of our group, on one hand the need for a full open mobile robotic platform that is very useful in fulfilling the teaching and research activity of our school community, and on the other hand with the idea of introducing an ethical product which would be useful as mobile multimedia information point as a service tool. This paper introduces exactly how the system is made up and explains just what the philosophy is behind this work. The navigation strategies and sensor fusion, where machine vision system is the most important one, are oriented towards goal achievement and are the key to the behaviour of the robot