924 resultados para Road drainage.
Resumo:
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system `Tsanfleuron-Sanetsch' in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.
Resumo:
Well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). The recently completed Iowa Highway Research Board (IHRB) project TR-643 provided extensive insights into Iowa subsurface drainage practices and pavement subdrain outlet performance. However, the project TR-643 (Phase I) forensic testing and evaluation were carried out in a drought year and during the fall season in 2012. Based on the findings of IHRB Project TR-643, the Iowa DOT requested an expanded Phase II study to address several additional research needs: evaluate the seasonal variation effects (dry fall 2012 versus wet spring/summer 2013, etc.) on subdrain outlet condition and performance; investigate the characteristics of tufa formation in Iowa subdrain outlets; investigate the condition of composite pavement subdrain outlets; examine the effect of resurfacing/widening/rehabilitation on subdrain outlets (e.g., the effects of patching on subdrain outlet performance); and identify a suitable drain outlet protection mechanism (like a headwall) and design for Iowa subdrain outlets based on a review of practices adopted by nearby states. A detailed forensic test plan was developed and executed for inspecting the Iowa pavement subdrains in pursuit of fulfilling the Phase II study objectives. The observed outlets with blockage and the associated surface distresses in newly constructed jointed plain concrete pavements (JPCPs) were slightly higher during summer 2013 compared to fall 2012. However, these differences are not significant. Less tufa formation due to the recycled portland cement concrete (RPCC) base was observed with (a) the use of plastic outlet pipe without the gate screen–type rodent guard and (b) the use of blended RPCC and virgin aggregate materials. In hot-mix asphalt (HMA) over JPCP, moisture-related distress types (e.g., reflection cracking) were observed more near blocked drainage outlet locations than near “no blockage” outlet locations. This finding indicates that compromised drainage outlet performance could accelerate the development of moisture-related distresses in Iowa composite pavement systems. ****** Note: This report follows on work report in "Evaluating Roadway Subsurface Drainage Practices, 2013" http://publications.iowa.gov/14902/ Note: This record contains links to the 210 page full report as well as the 3 page tech transfer summary. The summary is NOT deposited separately.
Determination of Flood Dischard Characteristics of Small Drainage Areas, HR-3, Progress Report, 1960
Resumo:
Project HR-3 of the Iowa Highway Research Board has been active since October 1, 1950. The project objective is the determination of flood discharge characteristics of small drainage areas. Funds for the project amount to $10,000 per year of which, by cooperative agreement, the Highway Commission and the U. S. Geological Survey each furnish $5,000. Previous reports have explained the set-up of the project and these explanations will not be repeated in this report.
Resumo:
The Lane-Wells Road Logger was utilized primarily to determine the feasibility of employing such a device for moisture and density control in Iowa highway construction. A secondary objective was the use of the Road Logger to obtain information concerning moisture content and density during and after construction. Correlation studies with conventional test results required a small portion of the lease period. Practically all phases of construction and most materials utilized in base and surface courses were surveyed. Results of this study were good, in general, with the Road Logger indicating dry density slightly higher and the moisture content slightly lower than conventional results in most instances. Economic feasibility seemed to pose the greatest problem for the acceptance of the Road Logger as a standard compaction control device. It would appear from the findings of this study that probably only large projects, or several smaller contracts tested simultaneously, could justify the expense of the Logger. A total of about 128 miles were surveyed with the Logger during the lease period. Approximately 16 days of downtime due to minor breakdowns were recorded. Inclement weather forcing construction delays resulted in several idle days in which the Logger's full capabilities were not realized.
Resumo:
A computer program to adjust roadway profiles has been developed to serve as an aid to the county engineers of the State of Iowa. Many hours are spent reducing field notes and calculating adjusted roadway profiles to prepare an existing roadway for paving that will produce a high quality ride and be as maintenance free as possible. Since the computer is very well adapted to performing long tedious tasks; programming this work for a computer would result in freeing the engineer of these tasks. Freed from manual calculations, the engineer is able to spend more time in solving engineering problems. The type of roadway that this computer program is designed to adjust is a road that at sometime. in its history was graded to a finished subgrade. After a period of time, this road is to receive a finished paved surface. The problem then arises whether to bring the existing roadway up to the de signed grade or to make profile adjustments and comprise between the existing and the design profiles. In order to achieve the latter condition using this program, the engineer needs to give the computer only a minimum amount of information.
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.
Resumo:
Supplement to HR-388 - "Total Cost of Transportation Analysis of Road and Highway Issues"
Resumo:
The report compares and contrasts the automated PASCO method of pavement evaluation to the manual procedures used by the Iowa Department of Transportation (DOT) to evaluate pavement condition. Iowa DOT's use of IJK and BPR roadmeters and manual crack and patch surveys are compared to PASCO's use of 35-mm photography, artificial lighting and hairline projection, tracking wheels and lasers to measure ride, cracking and patching, rut depths, and roughness. The Iowa DOT method provides a Present Serviceability Index (PSI) value and PASCO provides a Maintenance Control Index (MCI). Seven sections of Interstate Highway, county roads and city streets, and one shoulder section were tested with different speeds of data collection, surface types and textures, and stop and start conditions. High correlation of results between the two methods in the measurement of roughness (0.93 for the tracking wheel and 0.84 for the laser method) were recorded. Rut depth correlations of 0.61 and cracking of 0.32 are attributed to PASCO's more comprehensive measurement techniques. A cost analysis of the data provided by both systems indicates that PASCO is capable of providing a comparable result with improved accuracy at a cost of $125-$150 or less per two-lane mile depending on survey mileage. Improved data collection speed, accuracy, and reliability, and a visible record of pavement condition for comparable costs are available. The PASCO system's ability to provide the data required in the Highway Pavement Distress Identification Manual, the Pavement Condition Rating Guide, and the Strategic Highway Research Program Long Term Pavement Performance (LTPP) Studies, is also outlined in the report.
Resumo:
The Iowa Department of Transportation (DOT) evaluated the PAS I Road Survey System from PAVEDEX, Inc. of Spokane, Washington. This system uses video photograph to identify and quantify pavement cracking and patching distresses. Comparisons were made to procedures currently used in the State. Interstate highway, county roads and city streets, and two shoulder sections were evaluated. Variables included travel speeds, surface type and texture, and traffic control conditions. Repeatability and distress identification were excellent on rigid pavements. Differences in distress identification and the effect of surface textures in the flexible test sections limited the repeatability and correlation of data to that of the Iowa DOT method. Cost data indicates that PAVEDEX is capable of providing comparable results with improved accuracy at a reasonable cost, but in excess of that experienced currently by the Iowa DOT. PAVEDEX is capable of providing network level pavement condition data at highway speeds and analysis of the data to identify 1/8-inch cracks at approximately 2-3 lane miles per hour with manual evaluation. Photo-logging capability is also included in the unit.
Resumo:
The Falling Weight Deflectometer (FWD) has become the "standard" for deflection testing of pavements. Iowa has used a Road Rater since 1976 to obtain deflection information. A correlation between the Road Rater and the FWD was needed if Iowa was going to continue with the Road Rater. Comparative deflection testing was done using a Road Rater Model 400 and a Pynatest 8000 FWD on 26 pavement sections. The SHRP contractor, Braun Intertec Pavement, Inc., provided the FWD testing. The r^2 for the linear correlations ranged from 0.90 to 0.99 for the different pavement types and sensor locations.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
As truck traffic on Iowa secondary roads has increased, engineers have moved to concrete pavements of greater depths. Early designs included thickened edge pavements and depths of seven inches or greater. The designs typically did not have load transfer devices installed in the transverse joints and relied on aggregate interlock for this purpose. In some cases, aggregate interlock was not adequate to deal with the soils and traffic conditions and faulting of the joints has begun to appear. Engineers are now faced with the need to install or retrofit load transfer in the joints to preserve the pavements. Questions associated with this decision range from the type of dowel material to dowel diameter, spacing, number of bars, placement method, and construction techniques to be used to assure reduction or elimination of faulting. Buena Vista County constructed a dowel bar retrofit project on one mile of road. The plan called for addition of the dowels (2, 3, or 4) in the outer wheel path only and surface grinding in lieu of asphalt overlay. The project included the application of elliptical- and round-shaped dowels in a rehabilitation project. Dowel material types included conventional epoxy-coated steel and fiber-reinforced polymer (FRP). This work involved the determination of relative costs in materials to be used in this type of work and performance of FRP and elliptical-shaped steel dowels in the retrofit work. The results indicate good performance from each of the bar configurations and use the results of ride and deflection testing over the research period to project the benefits that can be gained from each configuration vs. the anticipated construction costs. The reader is cautioned that this project could not relate the number of dowels required to the level of anticipated truck traffic for other roads that might be considered.
Resumo:
Several strategies are available to the Iowa Department of Transportation (IaDOT) for limiting deterioration due to chloride-induced corrosion of embedded reinforcing bars in concrete bridge decks. While the method most commonly used throughout the Midwestern United States is to construct concrete bridge decks with fusion-bonded epoxy-coated reinforcing bars, galvanized reinforcing bars are an available alternative. Previous studies of the in situ performance of galvanized reinforcing bars in service in bridge decks have been limited. IaDOT requested that Wiss, Janney, Elstner Associates, Inc. (WJE) perform this study to gain further understanding of the long-term performance of an Iowa bridge deck reinforced with galvanized reinforcing bars. This study characterized the condition of a bridge deck with galvanized reinforcing bars after about 36 years of service and compared that performance to the expected performance of epoxy-coated or uncoated reinforcing bars in similar bridge construction. For this study, IaDOT selected the Iowa State Highway 92 bridge across Drainage Ditch #25 in Louisa County, Iowa (Structure No. 5854.5S092), which was constructed using galvanized reinforcing bars as the main deck reinforcing. The scope of work for this study included: field assessment, testing, and sampling; laboratory testing and analysis; analysis of findings; service life modeling; and preparation of this report. In addition, supplemental observations of the condition of the galvanized reinforcing bars were made during a subsequent project to repair the bride deck.
Resumo:
A prior project, HR-388, (which was entitled "Total Cost of Transportation analysis of road and highway issues"), explored the use of a total economic cost basis for evaluation of road based transportation issues. It was conducted as a proof-of-concept effort between 1996 and 2002, with the final report presented in May 2002. TR-477 rebuilt the analytical model using current data, then performed general, system level, county level, and road segment level analyses. The results are presented herein and will be distributed to all county engineers for information and local use.