948 resultados para Reparative and reactive fibrosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While most events related to the International Year of Deserts and Desertification 2006 took mainly a problem-oriented perspective and approach, the Bern Symposium held in May 2006 tried to adopt a more positive attitude by attempting to take stock of experience as well as best and worst practices in the past, both in development practice and in research. Through this deliberate focus on potentials, positive experiences, solutions and pathways, predominant passive and reactive attitudes and hopelessness might be better overcome. The Symposium was organized by CDE, NCCR North-South and Forum SLM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The metabolism of sodium, potassium, and chloride and the acid-base balance are sometimes altered in cystic fibrosis. Textbooks and reviews only marginally address the homeostasis of magnesium in cystic fibrosis. METHODS We performed a search of the Medical Subject Headings terms (cystic fibrosis OR mucoviscidosis) AND (magnesium OR hypomagnes[a]emia) in the US National Library of Medicine and Excerpta Medica databases. RESULTS We identified 25 reports dealing with magnesium and cystic fibrosis. The results of the review may be summarized as follows. First, hypomagnesemia affects more than half of the cystic fibrosis patients with advanced disease; second, magnesemia, which is normally age-independent, relevantly decreases with age in cystic fibrosis; third, aminoglycoside antimicrobials frequently induce both acute and chronic renal magnesium-wasting; fourth, sweat magnesium concentration was normal in cystic fibrosis patients; fifth, limited data suggest the existence of an impaired intestinal magnesium balance. Finally, stimulating observations suggest that magnesium supplements might achieve an improvement in respiratory muscle strength and mucolytic activity of both recombinant and endogenous deoxyribonuclease. CONCLUSIONS The first comprehensive review of the literature confirms that, despite being one of the most prevalent minerals in the body, the importance of magnesium in cystic fibrosis is largely overlooked. In these patients, hypomagnesemia should be sought once a year. Furthermore, the potential of supplementation with this cation deserves more attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The female reproductive tract (FRT) develops midway through embryogenesis, and consists of oviducts, uterine horns, cervix and upper part of the vagina. The uterine horns are composed of an epithelial layer, luminal (LE) and glandular epithelium (GE), surrounded by a mesenchymal layer, the stroma and myometrium. Interestingly, in most mammals the GE forms after birth and it only becomes fully differentiated as the female reaches sexual maturity. Uterine glands (UG) are made up of GE and are present in all mammals. They secrete nutrients, cytokines and several other proteins, termed histotroph, that are necessary for embryo implantation and development. Experiments in ewes and mice have revealed that females who lack UGs are infertile mainly due to impaired implantation and early pregnancy loss, suggesting that UGs are essential for fertility. Fortunately for us, UGs develop after birth allowing us to peer into the genetic mechanism of tubulogenesis and branching morphogenesis; two processes that are disrupted in various adenocarcinomas (cancer derived from glands). We created 3D replicas of the epithelium lining the FRT using optical projection tomography and characterized UG development in mice using lineagetracing experiments. Our findings indicate that mouse UGs develop as simple tubular structures and later grow multiple secretory units that stem from the main duct. The main aim of this project was to study the role of SOX9 in the UGs. Preliminary studies revealed that Sox9 is mostly found in the nucleus of the GE. vii This observation led to the hypothesis that Sox9 plays a role in the formation and/or differentiation of the GE. To study the role of Sox9 in UGs differentiation, we conditionally knocked out and overexpressed Sox9 in both the LE and GE using the progesterone receptor (Pgr) promoter. Overexpressing Sox9 in the uterine epithelium, parts of the stroma, and myometrium led to formation of multiple cystic structures inside the endometrium. Histological analysis revealed that these structures appeared morphologically similar to structures present in histological tissue sections obtained from patients with endometrial polyps. We have accounted for the presence of simple and complex hyperplasia with atypia, metaplasia, thick-walled blood vessels, and stromal fibrosis; all “hallmarks” that indicate overexpressing Sox9 leads to development of a polyp-like morphology. Therefore, we can propose the use of Sox9-cOE mice to study development of endometrial cystic lesions and disease progression into hyperplastic lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abundances of organic carbon, sulfur, and reactive iron in sediments of three upwelling environments (Peru, Oman and Benguela) suggest that organic carbon/reduced sulfur ratios (C/S-ratios) in this category of marine sediments deviate considerably from previously established empirical ratios in normal marine sediments. To clarify the discrepancies, we investigated those components of the diagenetic system that limit the formation of pyrite: sulfate concentrations and reduction rates in pore waters, availability of reactive iron, and the quantity and quality of organic matter. All three limitations are evident in our sample pools. The results suggest that C/S-ratios in recent and fossil marine sediments rich in organic matter may be unsuitable as paleoenvironmental indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speciations of sulfur (sulfide S, pyrite S, sulfate S) and of reactive iron (Fe3+, Fe2+, sulfide Fe) in bottom sediments have been studied in gravity cores and drill cores collected on the shelf of the southwest Caspian Sea. It has been shown that intensity of reduction processes, in particular sulfate reduction, as well as speciations of S and reactive Fe reflect the change of transgressive and regressive stages of the Caspian basin. Characteristic features for the investigated area are high sedimentation rate and high reactivity of organic matter entering bottom sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying phosphorus (P) concentrations in marine sediments is necessary for constraining the oceanic record of phosphorus burial and helps to constrain P sedimentary geochemistry. To understand P geochemistry in the sediments, we must determine the geochemical forms of P as well as the transformations occurring between these P components with depth and age. Although several records now exist of P geochemistry in the western and eastern equatorial Pacific (Filippelli and Delaney, 1995, doi:10.2973/odp.proc.sr.138.144.1995; 1996, doi:10.1016/0016-7037(96)00042-7), the western equatorial Atlantic (Delaney and Anderson, 1997, doi:10.2973/odp.proc.sr.154.124.1997), the California Current (Delaney and Anderson, in press), and the Benguela Current (Anderson et al., 2001, doi:10.1029/2000GB001270), most of these are Neogene records. Relatively little data exist from sediments of the Paleogene or Cretaceous, time periods when carbon isotope records indicate major carbon shifts and when the nature of P geochemistry has not been well constrained. Samples from several sites at various water depths, oceanographic regions, and ages are needed to understand how P geochemistry and burial in sediments reflect ocean history. We determined P geochemistry and reactive P concentrations in Atlantic sediments of Eocene to Cretaceous age. These are the first records of P geochemistry with good age control from this period. Blake Nose sites are ideal for investigating P geochemistry, as the sediments are shallowly buried at a range of water depths and sedimentation rates. We determined P concentrations and geochemistry, along with calcium carbonate contents, in mid-Cretaceous to upper Eocene sediments drilled on Blake Nose (Ocean Drilling Program Leg 171B) in a depth transect of four sites (Sites 1052, 1051, 1050, and 1049; water depths: 1345, 1983, 2300, and 2656 m, respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monsoon climate is an important component of the global climatic system. A comprehensive understanding of its variability over glacial-interglacial time scales as well as of its effects on the continent and in the ocean is required to decipher links between climate, continental weathering and productivity. A detailed multiproxy study, including bulk and clay mineralogy, grain-size analysis, phosphorus geochemistry (SEDEX extraction), organic matter characterization, and nitrogen stable isotopes, was carried out on samples from ODP Sites 1143 and 1144 (Leg 184, South China Sea), covering the past 140 000 years. We tentatively reconstruct the complex sedimentation and climatic history of the region during the last glacial-interglacial cycle, when sea-level variations, linked to the growth and melting of ice caps, interact with monsoon variability. During interglacial periods of high sea level, summer monsoon was strong, and humid and warm climate characterized the adjacent continent and islands. Clay minerals bear signals of chemical weathering during these intervals. High calcite and reactive phosphorus mass accumulation rates (MARs) indicate high productivity, especially in the southern region of the basin. During glacial intervals, strong winter monsoon provided enhanced detrital input from the continent, as indicated by high detrital MAR. Glacial low sea level resulted in erosion of sediments from the exposed Sunda shelf to the south, and clay mineral variations indicate that warm and humid conditions still prevailed in the southern tropical areas. Enhanced supply of nutrients from the continent, both by river and eolian input, maintained high primary productivity. Reduced circulation during these periods possibly induced active remobilization of nutrients, such as phosphorus, from the sediments. Intense and short cold periods recorded during glacial and interglacial stages correlate with loess records in China and marine climatic records in the North Atlantic, confirming a teleconnection between low- and high-latitude climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlations between chemical composition and coefficient of standardized ileal digestibility (CSID) of crude protein (CP) and amino acids (AA) were determined in 22 soybean meal (SBM) samples originated from USA (n = 8), Brazil (BRA; n = 7) and Argentina (ARG; n = 7) in 21-day old broilers. Birds were fed a commercial maize-SBM diet from 1 to 17 days of age followed by the experimental diets in which the SBM tested was the only source of protein (205 g CP/kg) for three days. Also, in vitro nitrogen (N) digestion study was conducted with these samples using the two-step enzymatic method. The coefficient of apparent ileal digestibility (CAID) of the SBM, independent of the origin, varied from 0.820 to 0.880 for CP, 0.850 to 0.905 for lysine (Lys), 0.859 to 0.907 for methionine (Met) and 0.664 to 0.750 for cysteine (Cys). The corresponding CSID values varied from 0.850 to 0.966 for CP, 0.891 to 0.940 for Lys, 0.931 to 0.970 for Met and 0.786 to 0.855 for Cys. The CSID of CP and Lys of the SBM were positively correlated with CP (r = 0.514; P menor que 0.05 and r = 0.370; P = 0.09, respectively), KOH solubility (KOH sol.) (r = 0.696; P menor que 0.001 and r = 0.619; P menor que 0.01, respectively), trypsin inhibitor activity (TIA) (r = 0.541; P menor que 0.01 and r = 0.416; P = 0.05, respectively) and reactive Lys (r = 0.563; P menor que 0.01 and r = 0.486; P menor que 0.05) values, but no relation was observed with neutral detergent fiber and oligosaccharide content. No relation between the CSID of CP determined in vivo and N digestibility determined in vitro was found. The CSID of most key AA were higher for the USA and the BRA meals than for the ARG meals. For Lys, the CSID was 0.921, 0.919 and 0.908 (P menor que 0.05) and for Cys 0.828, 0.833 and 0.800 (P menor que 0.01) for USA, BRA and ARG meals, respectively. It is concluded that under the conditions of this experiment, the CSID of CP and Lys increased with CP content, KOH sol., TIA and reactive Lys values of the SBM. The CSID of most limiting AA, including Lys and Cys, were higher for USA and BRA meals than for ARG meals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 μm) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products “glycotoxins.” Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This study seeks to analyse the links between strategies, structures and processes in the case of the largest Spanish town halls, using the Miles and Snow's models about organisational strategies, and asking the following questions: “What is the situation of municipal services' outsourcing in the largest Spanish town halls?”; “Do Spanish town halls follow the strategies suggested in Miles and Snow's model?”; and “Is there a relationship between the strategic position adopted by town halls and their stance on outsourcing?”. Design/methodology/approach – In order to achieve these aims a questionnaire was administered to the human resource managers in the town halls of the largest Spanish cities. Findings – The paper finds that outsourcing is a complement, which seeks to improve the services delivered, and local institutions do not resort to it due to a lack of internal resources but as a way to complement their own capabilities. Originality/value – The paper has identified three distinct strategic profiles in the town halls interviewed which coincide with the profiles that Miles and Snow call prospective, defensive and reactive strategies. It reveals that town halls which outsource to a greater extent are the ones which identify more with the prospective or reactive strategy, whereas those which outsource less are closer to the defensive strategy.