869 resultados para Relevance Feature Extraction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mit aktiven Magnetlagern ist es möglich, rotierende Körper durch magnetische Felder berührungsfrei zu lagern. Systembedingt sind bei aktiv magnetgelagerten Maschinen wesentliche Signale ohne zusätzlichen Aufwand an Messtechnik für Diagnoseaufgaben verfügbar. In der Arbeit wird ein Konzept entwickelt, das durch Verwendung der systeminhärenten Signale eine Diagnose magnetgelagerter rotierender Maschinen ermöglicht und somit neben einer kontinuierlichen Anlagenüberwachung eine schnelle Bewertung des Anlagenzustandes gestattet. Fehler können rechtzeitig und ursächlich in Art und Größe erkannt und entsprechende Gegenmaßnahmen eingeleitet werden. Anhand der erfassten Signale geschieht die Gewinnung von Merkmalen mit signal- und modellgestützten Verfahren. Für den Magnetlagerregelkreis erfolgen Untersuchungen zum Einsatz modellgestützter Parameteridentifikationsverfahren, deren Verwendbarkeit wird bei der Diagnose am Regler und Leistungsverstärker nachgewiesen. Unter Nutzung von Simulationsmodellen sowie durch Experimente an Versuchsständen werden die Merkmalsverläufe im normalen Referenzzustand und bei auftretenden Fehlern aufgenommen und die Ergebnisse in einer Wissensbasis abgelegt. Diese dient als Grundlage zur Festlegung von Grenzwerten und Regeln für die Überwachung des Systems und zur Erstellung wissensbasierter Diagnosemodelle. Bei der Überwachung werden die Merkmalsausprägungen auf das Überschreiten von Grenzwerten überprüft, Informationen über erkannte Fehler und Betriebszustände gebildet sowie gegebenenfalls Alarmmeldungen ausgegeben. Sich langsam anbahnende Fehler können durch die Berechnung der Merkmalstrends mit Hilfe der Regressionsanalyse erkannt werden. Über die bisher bei aktiven Magnetlagern übliche Überwachung von Grenzwerten hinaus erfolgt bei der Fehlerdiagnose eine Verknüpfung der extrahierten Merkmale zur Identifizierung und Lokalisierung auftretender Fehler. Die Diagnose geschieht mittels regelbasierter Fuzzy-Logik, dies gestattet die Einbeziehung von linguistischen Aussagen in Form von Expertenwissen sowie die Berücksichtigung von Unbestimmtheiten und ermöglicht damit eine Diagnose komplexer Systeme. Für Aktor-, Sensor- und Reglerfehler im Magnetlagerregelkreis sowie Fehler durch externe Kräfte und Unwuchten werden Diagnosemodelle erstellt und verifiziert. Es erfolgt der Nachweis, dass das entwickelte Diagnosekonzept mit beherrschbarem Rechenaufwand korrekte Diagnoseaussagen liefert. Durch Kaskadierung von Fuzzy-Logik-Modulen wird die Transparenz des Regelwerks gewahrt und die Abarbeitung der Regeln optimiert. Endresultat ist ein neuartiges hybrides Diagnosekonzept, welches signal- und modellgestützte Verfahren der Merkmalsgewinnung mit wissensbasierten Methoden der Fehlerdiagnose kombiniert. Das entwickelte Diagnosekonzept ist für die Anpassung an unterschiedliche Anforderungen und Anwendungen bei rotierenden Maschinen konzipiert.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in the angle of illumination incident upon a 3D surface texture can significantly alter its appearance, implying variations in the image texture. These texture variations produce displacements of class members in the feature space, increasing the failure rates of texture classifiers. To avoid this problem, a model-based texture recognition system which classifies textures seen from different distances and under different illumination directions is presented in this paper. The system works on the basis of a surface model obtained by means of 4-source colour photometric stereo, used to generate 2D image textures under different illumination directions. The recognition system combines coocurrence matrices for feature extraction with a Nearest Neighbour classifier. Moreover, the recognition allows one to guess the approximate direction of the illumination used to capture the test image

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a navigation system for autonomous underwater vehicles (AUVs) in partially structured environments, such as dams, harbors, marinas or marine platforms. A mechanical scanning imaging sonar is used to obtain information about the location of planar structures present in such environments. A modified version of the Hough transform has been developed to extract line features, together with their uncertainty, from the continuous sonar dataflow. The information obtained is incorporated into a feature-based SLAM algorithm running an Extended Kalman Filter (EKF). Simultaneously, the AUV's position estimate is provided to the feature extraction algorithm to correct the distortions that the vehicle motion produces in the acoustic images. Experiments carried out in a marina located in the Costa Brava (Spain) with the Ictineu AUV show the viability of the proposed approach

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) do not result in consistent maps of large areas because of gradual increase of the uncertainty for long term missions. In addition, as the size of the map grows the computational cost increases, making SLAM solutions unsuitable for on-line applications. This thesis surveys SLAM approaches paying special attention to those approaches aimed to work on large scenarios. Special focus is given to existing underwater SLAM applications. A technique based on using independent local maps together with a global stochastic map is presented. This technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative transformations between local maps, which are updated once a new loop is detected. Maps sharing several features are fused, maintaining the correlation between landmarks and vehicle's pose. The use of local maps reduces computational costs and improves map consistency as compared to state of the art techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we introduce a novel high-level visual content descriptor devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt for bridging the so called "semantic gap". The proposed image feature vector model is fundamentally underpinned by an automatic image labelling framework, called Collaterally Cued Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts accompanying the images with the state-of-the-art low-level visual feature extraction techniques for automatically assigning textual keywords to image regions. A subset of the Corel image collection was used for evaluating the proposed method. The experimental results indicate that our semantic-level visual content descriptors outperform both conventional visual and textual image feature models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.