938 resultados para Reduction process
Resumo:
This paper reports the findings from internal mould cooling trials using a water spray configuration applied at various internal mould air temperatures from 120°C to 180°C for an aluminium mould. To achieve maximum benefit in terms of cycle time reduction, internal mould water cooling was used in conjunction with a combination of external forced air and water cooling. Savings in cooling times of up to 30% were achieved compared to conventional external only forced air cooling.
Resumo:
In a Bayesian learning setting, the posterior distribution of a predictive model arises from a trade-off between its prior distribution and the conditional likelihood of observed data. Such distribution functions usually rely on additional hyperparameters which need to be tuned in order to achieve optimum predictive performance; this operation can be efficiently performed in an Empirical Bayes fashion by maximizing the posterior marginal likelihood of the observed data. Since the score function of this optimization problem is in general characterized by the presence of local optima, it is necessary to resort to global optimization strategies, which require a large number of function evaluations. Given that the evaluation is usually computationally intensive and badly scaled with respect to the dataset size, the maximum number of observations that can be treated simultaneously is quite limited. In this paper, we consider the case of hyperparameter tuning in Gaussian process regression. A straightforward implementation of the posterior log-likelihood for this model requires O(N^3) operations for every iteration of the optimization procedure, where N is the number of examples in the input dataset. We derive a novel set of identities that allow, after an initial overhead of O(N^3), the evaluation of the score function, as well as the Jacobian and Hessian matrices, in O(N) operations. We prove how the proposed identities, that follow from the eigendecomposition of the kernel matrix, yield a reduction of several orders of magnitude in the computation time for the hyperparameter optimization problem. Notably, the proposed solution provides computational advantages even with respect to state of the art approximations that rely on sparse kernel matrices.
Resumo:
(EN)Disclosed are a WC/CNT, WC/CNT/Pt composite material and a preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, carbon nanotubes and platinum nano particles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nano particles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, and carbon nanotubes, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material of the present invention can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.
Resumo:
Disclosed are a WC/CNT, WC/CNT/Pt composite material and a preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, carbon nanotubes and platinum nano particles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nano particles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, and carbon nanotubes, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material of the present invention can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.
Resumo:
A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.
Resumo:
Cold plasma is an emerging non-thermal processing technology that could be used for large scale leaf decontamination as an alternative to chlorine washing. In this study the effect of an atmospheric cold plasma apparatus (air DBD, 15 kV) on the safety, antioxidant activity and quality of radicchio (red chicory, Cichorium intybus L.) was investigated after 15 and 30 min of treatment (in afterglow at 70 mm from the discharge, at 22 °C and 60% of RH) and during storage. Escherichia coli O157:H7 inoculated on radicchio leaves was significantly reduced after 15 min cold plasma treatment (-1.35 log MPN/cm<sup>2</sup>). However, a 30 min plasma treatment was necessary to achieve a significant reduction of Listeria monocytogenes counts (-2.2 log CFU/cm<sup>2</sup>). Immediately after cold plasma treatment, no significant effects emerged in terms of antioxidant activity assessed by the ABTS and ORAC assay and external appearance of the radicchio leaves. Significant changes between treated and untreated radicchio leaves are quality defects based on the cold plasma treatment. Atmospheric cold plasma appears to be a promising processing technology for the decontamination of leafy vegetables although some criticalities, that emerged during storage, need to be considered in future studies.
Resumo:
Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier.
Resumo:
Purpose: This paper presents a combined multi-phase supplier selection model. The process repeatedly revisits the criteria and sourcing decision as the development process continues. This enables a structured adoption of product and production system innovation from strategic suppliers, where previously the literature purely focuses on product innovation or cost reduction. Design/methodology/approach: The authors adopted an embedded researcher style, inductive, qualitative case study of an industrial supply cluster comprising a focal automotive company and its interaction with three different strategic stamping suppliers. Findings: Our contribution is the multi-phased production and product innovation process. This is an advance from traditional supplier selection and also an extension of ideas of supplier-located product development as it includes production system development, and complements the literature on working with strategic suppliers. Specifically, we explicitly articulate the previously unreported issue of whether a supplier chosen for its innovation capabilities at the start of the new product development process will also be the most appropriate supplier during the production system development phase, when an ability to work collaboratively may be the most important attribute, or in the large-scale production phase when an ability to manufacture at low unit cost may be most important. Originality/value: The paper identifies a multi-phase approach to tendering within a fixed body of strategic suppliers which seeks to identify the optimum technological and process decisions as well as the traditional supplier sourcing choice. These areas have not been combined before and generate a valuable approach for firms to adopt as well as for researchers to extend our understanding of a highly complex process.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
Nowadays, a significant number of banks in Portugal are facing a bank-branch restructuring problem, and Millennium BCP is not an exception. The closure of branches is a major component of profit maximization through the reduction in operational and personnel costs but also an opportunity to approach the idea of “baking of future” and start thinking on the benefits of the digital era. This dissertation centers on a current high-impact organizational problem addressed by the company and consists in a proposal of optimization to the model that Millennium BCP uses. Even though measures of performance are usually considered the most important elements in evaluating the viability of branches, there is evidence suggesting that other general factors can be important to assess branch potential, such as the influx on branches, business dimensions of a branch and its location, which will be addressed in this project.
Resumo:
This study has two main objectives. First, the phlebotomy process at the St. Catharines Site of the Niagara Health System is investigated, which starts when an order for a blood test is placed, and ends when the specimen arrives at the lab. The performance measurement is the flow time of the process, which reflects concerns and interests of both the hospital and the patients. Three popular operational methodologies are applied to reduce the flow time and improve the process: DMAIC from Six Sigma, lean principles and simulation modeling. Potential suggestions are provided for the St. Catharines Site, which could result in an average of seven minutes reduction in the flow time. The second objective addresses the fact that these three methodologies have not been combined before in a process improvement effort. A structured framework combining them is developed to benefit future study of phlebotomy and other hospital processes.