702 resultados para Recombinaison homologue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of immune modifiers of inherited cancer syndromes may provide a rationale for preventive therapy. Cowden disease (CD) is a genetically heterogeneous inherited cancer syndrome that arises predominantly from germline phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation and increased phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signalling. However, many patients with classic CD diagnostic features are mutation-negative for PTEN (PTEN M-Neg). Interferon (IFN)-gamma can modulate the PI3K/mTOR pathway, but its association with PTEN M-Neg CD remains unclear. This study assessed IFN-gamma secretion by multi-colour flow cytometry in a CD kindred that was mutation-negative for PTEN and other known susceptibility genes. Because IFN-gamma responses may be regulated by killer cell immunoglobulin-like receptors (KIR) and respective human leucocyte antigen (HLA) ligands, KIR/HLA genotypes were also assessed. Activating treatments induced greater IFN-gamma secretion in PTEN M-Neg CD peripheral blood lymphocytes versus healthy controls. Increased frequency of activating KIR genes, potentially activating KIR/HLA compound genotypes and reduced frequency of inhibitory genotypes, were found in the PTEN M-Neg CD kindred. Differences of IFN-gamma secretion were observed among PTEN M-Neg CD patients with distinct KIR/HLA compound genotypes. Taken together, these findings show enhanced lymphocyte secretion of IFN-gamma that may influence the PI3K/mTOR CD causal molecular pathway in a PTEN mutation-negative CD kindred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K + channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 µM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Ka (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Ka and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 µM). Single-cell RT-PCR revealed mRNA expression for the a-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory ß-subunits was detected for Kvß2 in all SPN with differential expression of mRNA for KChIP1, Kvß1 and Kvß3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the ß-subunit Kvß2. Differential expression of the accessory ß subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons. © 2011 IBRO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear.

METHODS:
To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN(+/+), HCT116PTEN(-/-), Caco2 and Caco2 ShPTEN cells) after transfection or treatment strategies.

RESULTS:
The PTEN knockout or suppression by short hairpin RNA or small interfering RNA (siRNA) inhibited Cdc42 activity, PARP cleavage and/or apoptosis in flow cytometry assays. Transfection of cells with wild-type or constitutively active Cdc42 enhanced PARP cleavage, whereas siRNA silencing of Cdc42 inhibited PARP cleavage and/or apoptosis. Pharmacological upregulation of PTEN by sodium butyrate (NaBt) treatment enhanced Cdc42 activity, PARP cleavage and apoptosis, whereas Cdc42 siRNA suppressed NaBt-induced PARP cleavage. Cdc42-dependent signals can suppress glycogen synthase kinase-ß (GSK3ß) activity. Pharmacological inhibition of GSK3ß by lithium chloride treatment mimicked effects of Cdc42 in promotion of PARP cleavage and/or apoptosis.

CONCLUSION:
Phosphatase and tensin homologue deleted on chromosome 10 may influence apoptosis in colorectal epithelium through Cdc42 signalling, thus providing a regulatory framework for both polarised growth and programmed cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy, whole-mount preparations of three genera of marine trematode larvae, Cryntocotyle lingua, Cercaria emasculans and Himasthla leptosoma, were screened for 5-hydroxytryptamine (5-HT) and selected neuropeptide immunoreactivities (IRs). IRs for pancreatic polypeptide (PP), peptide YY (PYY) and FMRFamide were found in the central nervous systems of the three species of cercariae, immunostaining the paired ganglia and central commissure and the longitudinal nerve cords, with slight differences in both distribution and intensity of IRs being observed for the different antisera used. PP, PYY and FMRFamide IRs were evident in both central and peripheral components of the nervous system in the rediae of C. lingua. 5-HT IR was confined to the peripheral nervous systems of the cercariae of C. emasculans and the rediae of C. lingua, appearing in the form of a network of immunoreactive fibres and associated large cell bodies. A moderate substance P IR was observed in the nervous system of the cercariae of C. lingua. The patterns of immunostaining described were compared with those obtained using antiserum directed to the C-terminal decapeptide amide of neuropeptide F (NPF), a native parasitic peptide from the cestode Moniezia expansa. Results demonstrated that serotoninergic and peptidergic components were present in the nervous systems of all of the trematode larvae studied and that some, if not all, of the IR for PP. PYY and FMRFamide was due to the presence of a trematode NPF homologue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensory abnormalities associated with disorders such as dyslexia, autism and schizophrenia have often been attributed to a generalized deficit in the visual magnocellular-dorsal stream and its auditory homologue. To probe magnocellular function, various psychophysical tasks are often employed that require the processing of rapidly changing stimuli. But is performance on these several tasks supported by a common substrate? To answer this question, we tested a cohort of 1060 individuals on four 'magnocellular tasks': detection of low-spatial-frequency gratings reversing in contrast at a high temporal frequency (so-called frequency-doubled gratings); detection of pulsed low-spatial-frequency gratings on a steady luminance pedestal; detection of coherent motion; and auditory discrimination of temporal order. Although all tasks showed test-retest reliability, only one pair shared more than 4 per cent of variance. Correlations within the set of 'magnocellular tasks' were similar to the correlations between those tasks and a 'non-magnocellular task', and there was little consistency between 'magnocellular deficit' groups comprising individuals with the lowest sensitivity for each task. Our results suggest that different 'magnocellular tasks' reflect different sources of variance, and thus are not general measures of 'magnocellular function'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MICs of ciprofloxacin for 33 clinical isolates of K. pneumoniae resistant to extended-spectrum cephalosporins from three hospitals in Singapore ranged from 0.25 to >128 microg/ml. Nineteen of the isolates were fluoroquinolone resistant according to the NCCLS guidelines. Strains for which the ciprofloxacin MIC was >or=0.5 microg/ml harbored a mutation in DNA gyrase A (Ser83-->Tyr, Leu, or IIe), and some had a secondary Asp87-->Asn mutation. Isolates for which the MIC was 16 microg/ml possessed an additional alteration in ParC (Ser80-->IIe, Trp, or Arg). Tolerance of the organic solvent cyclohexane was observed in 10 of the 19 fluoroquinolone-resistant strains; 3 of these were also pentane tolerant. Five of the 10 organic solvent-tolerant isolates overexpressed AcrA and also showed deletions within the acrR gene. Complementation of the mutated acrR gene with the wild-type gene decreased AcrA levels and produced a two- to fourfold reduction in the fluoroquinolone MICs. None of the organic solvent-tolerant clinical isolates overexpressed another efflux-related gene, acrE. While marA and soxS were not overexpressed, another marA homologue, ramA, was overexpressed in 3 of 10 organic solvent-tolerant isolates. These findings indicate that multiple target and nontarget gene changes contribute to fluoroquinolone resistance in K. pneumoniae. Besides AcrR mutations, ramA overexpression (but not marA or soxS overexpression) was related to increased AcrAB efflux pump expression in this collection of isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis.
Results: Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress.
Conclusions: Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding migration of cells has many implications in human physiology; some examples include developmental biology, healing, immune responses and tissue remodeling. On the other hand, invasive migration by tumor cells is pathological and is a major cause of mortality amongst cancer sufferers. Cell migration assays have been widely used to quantify potentially metastatic genes. In recent years, the use of RNAi has significantly increased the tools available in cell migration research due to its specific gene targeting for knockdown. The inability to ensure 100% transfection/transduction efficiency reduces the sensitivity of cell migration assays because cells not successfully transfected/transduced with the RNAi are also included in the calculations. This study introduces a different experimental setup mathematically expressed in our named normalized relative infected cell count (N-RICC) that analyses cell migration assays by co-expressing retrovirally transduced shRNA with fluorescence tags from a single vector. Vectors transduced into cells are visible under fluorescence, thus alleviating the problems involved with transduction efficiency by individually identifying cells with targeted genes. Designed shRNAs were targeted against a list of potentially metastatic genes in a highly migratory breast cancer cell line model, MDA-MB-231. We have successfully applied N-RICC analysis to show greater sensitivity of integrin alpha5 (ITGA5) and Ras homologue A (RhoA) in cell metastasis over conventional methods in scratch-wound assays and migration chambers assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1-mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c-inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tandem ene/intramolecular Sakurai cyclisation (IMSC) reaction has been successfully applied to thesynthesis of a range of C-glycosides, with key intermediates offering opportunities for functionalisation ofthe glycon moiety. To demonstrate the versatility of the approach to access the 2-deoxy-C-glycoside series,we synthesised diastereomerically pure C-glucoside and galactoside derivatives incorporating functionalisedaromatic, heteroaromatic and bicyclic aromatic moieties, in addition to the C-homologue of(±)-b-2-deoxy-glucose 6-phosphate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus grows in one of two ways: either (i) predatorily [in a host-dependent (HD) manner], when it invades the periplasm of another Gram-negative bacterium, exporting into the prey co-ordinated waves of soluble enzymes using the prey cell contents for growth; or (ii) in a host-independent (HI) manner, when it grows (slowly) axenically in rich media. Periplasmic invasion potentially exposes B. bacteriovorus to extremes of pH and exposes the need to scavenge electron donors from prey electron transport components by synthesis of metalloenzymes. The twin-arginine transport system (Tat) in other bacteria transports folded metalloenzymes and the B. bacteriovorus genome encodes 21 potential Tat-transported substrates and Tat transporter proteins TatA1, TatA2 and TatBC. GFP tagging of the Tat signal peptide from Bd1802, a high-potential iron-sulfur protein (HiPIP), revealed it to be exported into the prey bacterium during predatory growth. Mutagenesis showed that the B. bacteriovorus tatA2 and tatC gene products are essential for both HI and HD growth, despite the fact that they partially complement (in SDS resistance assays) the corresponding mutations in Escherichia coli where neither TatA nor TatC are essential for life. The essentiality of B. bacteriovorus TatA2 was surprising given that the B. bacteriovorus genome encodes a second tatA homologue, tatA1. Transcription of tatA1 was found to be induced upon entry to the bdelloplast, and insertional inactivation of tatA1 showed that it significantly slowed the rates of both HI and HD growth. B. bacteriovorus is one of a few bacterial species that are reliant on a functional Tat system and where deletion of a single tatA1 gene causes a significant growth defect(s), despite the presence of its tatA2 homologue.