972 resultados para Reclaimed asphalt pavements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. The Iowa Department of Transportation (Iowa DOT) UTW project (HR-559) initiated UTW in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. This research lasted for five years, at which time it was extended an additional five years. The new phase of the project was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension (TR 432) will provide an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. In order to accomplish the goals of the project extension, Falling Weight Deflectometer (FWD) testing will continue to be conducted. Laboratory testing, field strain gage implementation, and coring will no longer be conducted. This report documents the planning and construction of the rehabilitation of HR 559 and the beginning of TR 432 during August of 1999.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was undertaken by the Bituminous Research Laboratory of the Engineering Research Institute at Iowa State University, under the sponsorship of the Iowa Highway Research Board, project HR 100, to ascertain the effects of a number of characteristics and properties of asphaltic concrete mixes upon the service behavior of the mixes as evaluated by the Traffic Simulator and by field observations. The study included: Investigations of the relations, of gradation, fraction and resistance to wear of aggregates; of stability, cohesion, per cent voids and asphalt content: of a number of laboratory and field mixes to service behavior as indicated by the Traffic Simulator under various test conditions. Based upon the results of the tests and the relationships noted, tentative criteria for the Traffic Simulator test were devised, subject to verification by observations and measurements of field service behavior of the mixes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When mixing asphalt in thin film and at high temperatures, as in the production of asphalt concrete, it has been shown that asphalt will harden due essentially to two factors: (1) losses of volatiles and (2) oxidation. The degree of hardening as expressed by percent loss in penetration varied from as low as 7% to about 57% depending on mixing temperatures, aggregate types, gradation, asphalt content, penetration and other characteristics of asphalts used. Methods used to predict hardening during mixing include loss on heat and thin film oven tests, with the latter showing better correlation with the field findings. However, information on other physical and chemical changes that may occur as a result of mixing in the production of hot-mix asphaltic concrete is limited, The purpose of this research project was to ascertain the changes of asphalt cement properties, both physical and chemical, during mixing operation and to determine whether one or more of the several tests of asphalt cements were critical enough to indicate these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the asphalt absorption of six Iowa limestones were investigated. It was found that the most important factors that determined the nature, amount, and rate of asphalt absorption are porosity and pore-size distribution of the aggregate, viscosity of the asphalt, and time. Methods needed to determine the realistic maximum and minimum asphalt absorption by aggregates are recommended. Simple methods of asphalt absorption were developed. Since the most important factor that determines the accuracy of asphalt absorption is the bulk specific gravity of aggregates and since the current ASTM method is not adequate in this respect, several new methods were developed. Preliminary treatment studies for the purpose of upgrading absorptive aggregates were conducted using close to 40 chemicals. The improvements of some of these treatments on the mixture properties were demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some asphaltic concrete mixes asphalt absorption in field mixes is difficult to predict by the routine mix design tests presently being used. Latent or slow absorption in hot mixes is hard to compensate for in field control due to aggregate gradations being near maximum density. If critical asphalt need could be changed by increasing voids in the mineral aggregate so that more freedom could be exercised in compensating for the absorption, this may aid in design. The voids in the mineral aggregate can be related to composite gradation of total aggregate in a mixture, i.e. if a composite gradation of aggregate is finer than that of maximum density curve, the V.M.A. will be greater than that of a mix of maximum density. The typical gradation of Iowa Type 'A' mixes is finer than a gradation which is near the centerline of the specification at sieves larger than the No. 30 and coarser at the lower sieve sizes. The mixes of the typical gradation will have higher V.M.A. than those of the near centerline mixes. By studying properties of the mixes of the typical gradation and comparing them with those of the mixes of maximum density, it may aid in the modification and simplification of our present testing methods and specification requirements while still maintaining control of quality of the mix by controlling voids, stability, gradation and asphalt content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Road Rater is a dynamic deflection measuring apparatus for flexible base pavements. The Road Rater replaces the Benkelman Beam which was last used by the Iowa DOT in 1977. Road Rater test results correlate reasonably well (correlation coefficient = 0.83) with Benkelman Beam test data. The basic differences between the Road Rater and Benkelman Beam are as follows: 1. The Benkelman Beam uses a static 18,000 lb. load while the Road Rater uses a dynamic 800 to 2,000 lb. loading. 2. The Road Rater tests much faster and more economically than the Benkelman Beam. 3. The Road Rater better simulates a moving truck than the Benkelman Beam. The basic operating principle of the Road Rater is to impart a dynamic loading and measure the resultant movement of the pavement with velocity sensors. This data, when properly adjusted for temperature by use of a nomograph included in this report, can be used to determine pavement life expectancy and estimate overlay thickness required. Road Rater testing will be conducted in the spring, when pavements are in their weakest condition, until seasonal correction factors can be developed. The Road Rater does not have sufficient ram weight to effectively evaluate load carrying capacity of rigid pavements. All rigid pavements react similarly to Road Rater testing and generally deflect from 0.65 to 1.30 mils. Research will be contined to evaluate rigid pavements with the Road Rater, however. The Road Rater has proven to be a reliable, troublefree pavement evaluation machine. The deflection apparatus was originally front-mounted,but was rear-mounted during the winter of 1977-78. Since that time, van handling has greatly improved, and front suspension parts are no longer overstressed due to improper weight distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the overall research program of evaluating asphalt emulsion slurry seal as a pavement maintenance material, 31 duplicate 500-ft test sections were constructed on U.S. 6 between Adel and Waukee in Dallas County during September and October of 1978. These test sections included combinations of eight aggregates, two gradings, three asphalt emulsions, two mineral fillers, and a range of emulsion contents determined by laboratory mix designs. The emulsion contents of the test sections varied from 10.3% for Section 7A (Ferguson coarse) to 32.9% for Section 31A (lightweight aggregate). The post-construction performance evaluation of the test sections, consisting primarily of the friction tests and surface appearance observations, was conducted at different time intervals up to 24 months after construction. At the 24-month final evaluation, most of the test sections had carried a total of 1.4 million vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research Project HR-124, "Development of a Laboratory Durability Test for Asphalts," was initiated in 1966 as a long-range comprehensive program. Its ultimate objective was to develop a simple, rapid laboratory test that could be used by highway engineers to select paving asphalt according to quality, to identify inferior asphalts, and to reasonably predict the useful life of asphalts once they were incorporated in the pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). The recently completed Iowa Highway Research Board (IHRB) project TR-643 provided extensive insights into Iowa subsurface drainage practices and pavement subdrain outlet performance. However, the project TR-643 (Phase I) forensic testing and evaluation were carried out in a drought year and during the fall season in 2012. Based on the findings of IHRB Project TR-643, the Iowa DOT requested an expanded Phase II study to address several additional research needs: evaluate the seasonal variation effects (dry fall 2012 versus wet spring/summer 2013, etc.) on subdrain outlet condition and performance; investigate the characteristics of tufa formation in Iowa subdrain outlets; investigate the condition of composite pavement subdrain outlets; examine the effect of resurfacing/widening/rehabilitation on subdrain outlets (e.g., the effects of patching on subdrain outlet performance); and identify a suitable drain outlet protection mechanism (like a headwall) and design for Iowa subdrain outlets based on a review of practices adopted by nearby states. A detailed forensic test plan was developed and executed for inspecting the Iowa pavement subdrains in pursuit of fulfilling the Phase II study objectives. The observed outlets with blockage and the associated surface distresses in newly constructed jointed plain concrete pavements (JPCPs) were slightly higher during summer 2013 compared to fall 2012. However, these differences are not significant. Less tufa formation due to the recycled portland cement concrete (RPCC) base was observed with (a) the use of plastic outlet pipe without the gate screen–type rodent guard and (b) the use of blended RPCC and virgin aggregate materials. In hot-mix asphalt (HMA) over JPCP, moisture-related distress types (e.g., reflection cracking) were observed more near blocked drainage outlet locations than near “no blockage” outlet locations. This finding indicates that compromised drainage outlet performance could accelerate the development of moisture-related distresses in Iowa composite pavement systems. ****** Note: This report follows on work report in "Evaluating Roadway Subsurface Drainage Practices, 2013" http://publications.iowa.gov/14902/ Note: This record contains links to the 210 page full report as well as the 3 page tech transfer summary. The summary is NOT deposited separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most bituminous adhesives or binders that are used for pavement materials are derived primarily from fossil fuels. With petroleum oil reserves becoming depleted and the drive to establish a bio-based economy, there is a push to produce binders from alternative sources, particularly from biorenewable resources. However, until now, no research has studied the applicability of utilizing bio-oils as a bitumen replacement (100% replacement) in the pavement industry. The main objective of this research was to test various properties of bio-oils in order to determine the applicability of using bio-oils as binders in the pavement industry. The overall conclusions about the applicability of using bio-oils as bio-binders in the pavement industry can be summarized as follows: 1. Bio-oils cannot be used as bio-binders/pavement materials without any heat pre-treatment/upgrading procedure. 2. Current testing standards and specifications, especially Superpave procedures, should be modified to comply with the properties of bio-binders. 3. The temperature range of the viscous behavior for bio-oils may be lower than that of bitumen binders by about 30°–40° C. 4. The rheological properties of the unmodified bio-binders vary in comparison to bitumen binders, but the rheological properties of these modified bio-binders change significantly upon adding polymer modifiers. 5. The high-temperature performance grade for the developed bio-binders may not vary significantly from that of the bitumen binders, but the low-temperature performance grade may vary significantly

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic purpose of this study was to determine if an expanded polystyrene insulating board could prevent subgrade freezing and thereby reduce frost heave. The insulating board was placed between a nine inch P. C. concrete slab and a frost-susceptible subgrade. In one section at the test site, selected backfill material was placed under the pavement. The P. C. pavement was later covered by asphalt surfacing. Thermocouples were installed for obtaining temperature recordings at various locations in the surfacing, concrete slab, subgrade and shoulders. This report contains graphs and illustrations showing temperature distributions for two years, as well as profile elevations and the results of moisture tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3, 960 Marshall and Hveem specimens were examined. The main thrust of the statistical analysis conducted in this experiment was in the calibration study and in Part I of the experiment. In the former study, the compaction procedure between the Iowa State University Lab and the Iowa Highway Commission Lab was calibrated. By an analysis of the errors associated with the measurements we were able to separate the "preparation" and "determination" errors for both laboratories as well as develop the calibration curve which describes the relationship between the compaction procedures at the two labs. In Part I, the use of a fractional factorial design in a split plot experiment in measuring the effect of several factors on asphalt concrete strength and weight was exhibited. Also, the use of half normal plotting techniques for indicating significant factors and interactions and for estimating errors in experiments with only a limited number of observations was outlined,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100 (d/D)n is not justified. It is recommended that. the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.