999 resultados para Reception modes
Resumo:
Recent infrared spectroscpic observations of local vibrational mode absorptions have revealed a number of photosensitive centers in semi-insulating GaAs. They include (OVAs) center which has three modes at 730 cm(-1) (A), 715 cm(-1) (B), and 714 cm(-1) (C), respectively, a suggested NH center related to a line at 983 cm(-1) (X(1)), and centers related to hydrogen, such as (H-O) or (H-N) bonds, corresponding to a group of peaks in the region of 2900-3500 cm(-1). The photosensitivity of various local vibration centers was observed to have similar time dependence under near-infrared illumination and was suggested to be due to their charge-state interconversion. Mainly described in this work is the effect of the 1.25-eV illumination. It is confirmed that this photoinduced kinetic process results from both electron capture and hole capture, which are closely related to the photoionization behavior and metastability of the EL2 center.
Resumo:
Here we study fermionic zero modes in gauge and gravity backgrounds taking a two-dimensional compact manifold T-2 as extra dimensions. The result is that there exist massless Dirac fermions which have normalizable zero modes under quite general assumptions about these backgrounds on the bulk. Several special cases of gauge background on the torus are discussed and some simple fermionic zero modes axe obtained.
Resumo:
A porous material with cobalt-oxygen cluster framework has been synthesized hydrothermally, which possesses large and rigid channels and manifests strong antiferromagnetic interactions, and the pyridinedicarboxylate ligand exhibits two types of rare coordination modes.
Resumo:
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV-vis, fluorescence, circular dichroism (CD) spectroscopy, UV-rnelting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation.
Resumo:
By analyzing the distributions of subsurface temperature and the surface wind stress anomalies in the tropical Pacific and Indian Oceans during the Indian Ocean Dipole (IOD) events, two major modes of the IOD and their formation mechanisms are revealed. (1) The subsurface temperature anomaly (STA) in the tropical Indian Ocean during the IOD events can be described as a "<" -shaped and west-east-oriented dipole pattern; in the east side of the "<" pattern, a notable tongue-like STA extends westward along the equator in the tropical eastern Indian Ocean; while in the west side of the "<" pattern, the STA has opposite sign with two centers (the southern one is stronger than the northern one in intensity) being of rough symmetry about the equator in the tropical mid-western Indian Ocean. (2) The IOD events are composed of two modes, which have similar spatial pattern but different temporal variabilities due to the large scale air-sea interactions within two independent systems. The first mode of the IOD event originates from the air-sea interaction on a scale of the tropical Pacific-Indian Ocean and coexists with ENSO. The second mode originates from the air-sea interaction on a scale of the tropical Indian Ocean and is closely associated with changes in the position and intensity of the Mascarene high pressure. The strong IOD event occurs when the two modes are in phase, and the IOD event weakens or disappears when the two modes are out of phase. Besides, the IOD events are normally strong when either of the two modes is strong. (3) The IOD event is caused by the abnormal wind stress forcing over the tropical Indian Ocean, which results in vertical transports, leading to the upwelling and pileup of seawater. This is the main dynamic processes resulting in the STA. When the anomalous easterly exists over the equatorial Indian Ocean, the cold waters upwell in the tropical eastern Indian Ocean while the warm waters pileup in the tropical western Indian Ocean, hence the thermocline in the tropical Indian Ocean is shallowed in the east and deepened in the west. The off-equator component due to the Coriolis force in the equatorial area causes the upwelling of cold waters and the shallowing of the equatorial India Ocean thermocline. On the other hand, the anomalous anticyclonic circulations and their curl fields located on both sides of the equator, cause the pileup of warm waters in the central area of their curl fields and the deepening of the equatorial Indian Ocean thermocline off the equator. The above three factors lead to the occurrence of positive phase IOD events. When anomalous westerly dominates over the tropical Indian Ocean, the dynamic processes are reversed, and the negative-phase IOD event occurs.
Resumo:
We present a unifying framework in which "object-independent" modes of variation are learned from continuous-time data such as video sequences. These modes of variation can be used as "generators" to produce a manifold of images of a new object from a single example of that object. We develop the framework in the context of a well-known example: analyzing the modes of spatial deformations of a scene under camera movement. Our method learns a close approximation to the standard affine deformations that are expected from the geometry of the situation, and does so in a completely unsupervised (i.e. ignorant of the geometry of the situation) fashion. We stress that it is learning a "parameterization", not just the parameter values, of the data. We then demonstrate how we have used the same framework to derive a novel data-driven model of joint color change in images due to common lighting variations. The model is superior to previous models of color change in describing non-linear color changes due to lighting.