923 resultados para Random Integer Partition
Resumo:
We report Monte Carlo results for a nonequilibrium Ising-like model in two and three dimensions. Nearest-neighbor interactions J change sign randomly with time due to competing kinetics. There follows a fast and random, i.e., spin-configuration-independent diffusion of Js, of the kind that takes place in dilute metallic alloys when magnetic ions diffuse. The system exhibits steady states of the ferromagnetic (antiferromagnetic) type when the probability p that J>0 is large (small) enough. No counterpart to the freezing phenomena found in quenched spin glasses occurs. We compare our results with existing mean-field and exact ones, and obtain information about critical behavior.
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
In this paper, we prove that a self-avoiding walk of infinite length provides a structure that would resolve Olbers' paradox. That is, if the stars of a universe were distributed like the vertices of an infinite random walk with each segment length of about a parsec, then the night sky could be as dark as actually observed on the Earth. Self-avoiding random walk structure can therefore resolve the Olbers' paradox even in a static universe.
Resumo:
Background: Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods: Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results: CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69- 75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion: With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients.
Resumo:
Using numerical simulations we investigate how overall dimensions of random knots scale with their length. We demonstrate that when closed non-self-avoiding random trajectories are divided into groups consisting of individual knot types, then each such group shows the scaling exponent of approximately 0.588 that is typical for self-avoiding walks. However, when all generated knots are grouped together, their scaling exponent becomes equal to 0.5 (as in non-self-avoiding random walks). We explain here this apparent paradox. We introduce the notion of the equilibrium length of individual types of knots and show its correlation with the length of ideal geometric representations of knots. We also demonstrate that overall dimensions of random knots with a given chain length follow the same order as dimensions of ideal geometric representations of knots.
Resumo:
We study discrete-time models in which death benefits can depend on a stock price index, the logarithm of which is modeled as a random walk. Examples of such benefit payments include put and call options, barrier options, and lookback options. Because the distribution of the curtate-future-lifetime can be approximated by a linear combination of geometric distributions, it suffices to consider curtate-future-lifetimes with a geometric distribution. In binomial and trinomial tree models, closed-form expressions for the expectations of the discounted benefit payment are obtained for a series of options. They are based on results concerning geometric stopping of a random walk, in particular also on a version of the Wiener-Hopf factorization.
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Resumo:
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
Sobriety checkpoints are not usually randomly located by traffic authorities. As such, information provided by non-random alcohol tests cannot be used to infer the characteristics of the general driving population. In this paper a case study is presented in which the prevalence of alcohol-impaired driving is estimated for the general population of drivers. A stratified probabilistic sample was designed to represent vehicles circulating in non-urban areas of Catalonia (Spain), a region characterized by its complex transportation network and dense traffic around the metropolis of Barcelona. Random breath alcohol concentration tests were performed during spring 2012 on 7,596 drivers. The estimated prevalence of alcohol-impaired drivers was 1.29 PER CENT, which is roughly a third of the rate obtained in non-random tests. Higher rates were found on weekends (1.90 PER CENT on Saturdays, 4.29 PER CENT on Sundays) and especially at night. The rate is higher for men (1.45 PER CENT) than for women (0.64 PER CENT) and the percentage of positive outcomes shows an increasing pattern with age. In vehicles with two occupants, the proportion of alcohol-impaired drivers is estimated at 2.62 PER CENT, but when the driver was alone the rate drops to 0.84 PER CENT, which might reflect the socialization of drinking habits. The results are compared with outcomes in previous surveys, showing a decreasing trend in the prevalence of alcohol-impaired drivers over time.
Resumo:
We present a model for transport in multiply scattering media based on a three-dimensional generalization of the persistent random walk. The model assumes that photons move along directions that are parallel to the axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for approximation schemes to multiple light scattering.
Resumo:
Peer-reviewed
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities