969 resultados para Radiation dose reduction
Resumo:
PURPOSE: We conducted a phase I multicenter trial in naïve metastatic castrate-resistant prostate cancer patients with escalating inecalcitol dosages, combined with docetaxel-based chemotherapy. Inecalcitol is a novel vitamin D receptor agonist with higher antiproliferative effects and a 100-fold lower hypercalcemic activity than calcitriol. EXPERIMENTAL DESIGN: Safety and efficacy were evaluated in groups of three to six patients receiving inecalcitol during a 21-day cycle in combination with docetaxel (75 mg/m2 every 3 weeks) and oral prednisone (5 mg twice a day) up to six cycles. Primary endpoint was dose-limiting toxicity (DLT) defined as grade 3 hypercalcemia within the first cycle. Efficacy endpoint was ≥30% PSA decline within 3 months. RESULTS: Eight dose levels (40-8,000 μg) were evaluated in 54 patients. DLT occurred in two of four patients receiving 8,000 μg/day after one and two weeks of inecalcitol. Calcemia normalized a few days after interruption of inecalcitol. Two other patients reached grade 2, and the dose level was reduced to 4,000 μg. After dose reduction, calcemia remained within normal range and grade 1 hypercalcemia. The maximum tolerated dose was 4,000 μg daily. Respectively, 85% and 76% of the patients had ≥30% PSA decline within 3 months and ≥50% PSA decline at any time during the study. Median time to PSA progression was 169 days. CONCLUSION: High antiproliferative daily inecalcitol dose has been safely used in combination with docetaxel and shows encouraging PSA response (≥30% PSA response: 85%; ≥50% PSA response: 76%). A randomized phase II study is planned.
Resumo:
Colorectal cancer frequently disseminates through the portal vein into the liver. In this study, outbred Swiss nude mice were adapted to facilitate the induction of liver metastases by a pre-grafting treatment with 6 Gy total body irradiation and i.v. injection of anti-asialo GM1 antibody. One day later, cultured LS 174T human colon cancer cells were injected into the surgically exposed spleen, which was resected 3 min later. In 48 of 65 mice, a few to several hundred liver metastases were macroscopically observed at dissection 3 to 4 weeks after transplantation. Ten of 10 mice, followed-up for survival, died with multiple large confluent liver metastases. By reducing the radiation dose to 4 or 0 Gy, or omitting the anti-asialo GM1 antibody injection, only 60%, 37% or 50% of mice, respectively, had visible metastases 3 weeks after transplantation. Carcinoembryonic antigen (CEA) measured in tumour extracts was in the mean 25.6 micrograms/g in liver metastases compared with 9.2 micrograms/g in s.c. tumours. Uptake of radiolabelled anti-CEA monoclonal antibody (MAb) in the metastases 12, 24 and 48 hr after injection gave a mean value of 39% of the injected dose per gram of tissue (ID/g). In comparison, MAb uptake in s.c. and intrasplenic tumours or lung metastases gave a mean percentage ID/g of 20, 18 and 15, respectively. Laser-induced fluorescence after injection of indocyanin-MAb conjugate allowed direct visual detection of small liver metastases, including some that were not visible under normal light. Preliminary results showed that mice, pre-treated with 4 Gy irradiation and the anti-asialo GM1 injection, were tolerant to radioimmunotherapy with a total dose of 500 muCi 131I labeled anti-CEA intact MAbs given in 3 injections.
Resumo:
Tumors in non-Hodgkin lymphoma (NHL) patients are often proximal to the major blood vessels in the abdomen or neck. In external-beam radiotherapy, these tumors present a challenge because imaging resolution prevents the beam from being targeted to the tumor lesion without also irradiating the artery wall. This problem has led to potentially life-threatening delayed toxicity. Because radioimmunotherapy has resulted in long-term survival of NHL patients, we investigated whether the absorbed dose (AD) to the artery wall in radioimmunotherapy of NHL is of potential concern for delayed toxicity. SPECT resolution is not sufficient to enable dosimetric analysis of anatomic features of the thickness of the aortic wall. Therefore, we present a model of aortic wall toxicity based on data from 4 patients treated with (131)I-tositumomab. METHODS: Four NHL patients with periaortic tumors were administered pretherapeutic (131)I-tositumomab. Abdominal SPECT and whole-body planar images were obtained at 48, 72, and 144 h after tracer administration. Blood-pool activity concentrations were obtained from regions of interest drawn on the heart on the planar images. Tumor and blood activity concentrations, scaled to therapeutic administered activities-both standard and myeloablative-were input into a geometry and tracking model (GEANT, version 4) of the aorta. The simulated energy deposited in the arterial walls was collected and fitted, and the AD and biologic effective dose values to the aortic wall and tumors were obtained for standard therapeutic and hypothetical myeloablative administered activities. RESULTS: Arterial wall ADs from standard therapy were lower (0.6-3.7 Gy) than those typical from external-beam therapy, as were the tumor ADs (1.4-10.5 Gy). The ratios of tumor AD to arterial wall AD were greater for radioimmunotherapy by a factor of 1.9-4.0. For myeloablative therapy, artery wall ADs were in general less than those typical for external-beam therapy (9.4-11.4 Gy for 3 of 4 patients) but comparable for 1 patient (32.6 Gy). CONCLUSION: Blood vessel radiation dose can be estimated using the software package 3D-RD combined with GEANT modeling. The dosimetry analysis suggested that arterial wall toxicity is highly unlikely in standard dose radioimmunotherapy but should be considered a potential concern and limiting factor in myeloablative therapy.
Resumo:
Marked differences in the tumor uptake of a 125I-labeled monoclonal antibody (MAb) directed against carcinoembryonic antigen (CEA) were observed in 4 serially transplanted human colorectal carcinomas in nude mice. A comparative study showed that elevated values of measurable tumor vascular parameters, such as permeability, blood flow and blood volume, correlated better with high MAb tumor uptake than the concentration of target antigen in the tumor. In an attempt to modify the vascular parameters and to determine if this could increase antibody uptake by the tumor, rhTNF alpha (TNF) was injected i.t. or i.v. and antibody localization experiments were performed immediately thereafter. Results showed that the permeability of the tumor vessels increased 8 to 10 fold 1 hr after i.t. injection of TNF as compared to control tumors injected with saline. Tumor uptake of 125I-labeled anti-CEA MAb, was 3 times higher 2 hr after i.v. injection and still 27% higher 22 hr later, as compared to results from controls. Intravenous injection of TNF simultaneously with the 125I-labeled anti-CEA MAb also resulted in a 2-fold increase in tumor uptake 4 hr after injection, but the increase was no longer significant 24 hr after injection. Interestingly after i.v. injection of TNF, the MAb concentration in the blood and other normal tissues, such as liver, kidneys, lungs and heart was decreased, resulting in significantly higher ratios of tumor to normal tissue. Taken together the results demonstrate that injection of TNF can increase tumor vascular permeability and improve radio-antibody uptake. This raises the possibility of increasing the radiation dose delivered by antibody to the tumor in the course of radioimmunotherapy.
Resumo:
BRAF inhibitory therapy is the mainstream treatment for BRAF mutant advanced melanoma. However vemurafenib, a type I mutant BRAF V600 inhibitor, induces an array of proliferative skin disorders from keratosis pilaris-like and keratoacanthoma-like lesions to locally aggressive cutaneous squamous cell carcinoma (cuSCC). Dual BRAF/MEK inhibition is known to lower the incidence of such manifestations, but it is not known whether it can counteract established lesions. Here we show, for the first time, a dramatic response and a restitution ad integro upon dual inhibition of a widespread proliferative affection induced by BRAF monotherapy. A 75-year-old woman was diagnosed with a BRAF V600E mutated metastatic melanoma. Following dacarbazine (DTIC) and ipilimumab, the patient was started on 960 mg twice daily vemurafenib (Zelboraf), which resulted in complete response, but the patient also developed grade IV skin toxicity. Despite dose-reduction to 720 mg twice daily the side effects persisted. We hypothesized that a switch to double inhibition of the mitogen-activated protein kinase pathway with dabrafenib and trametinib could lead to improvement of the skin lesions, while preserving tumor control. The patient was closely followed for changes in skin lesions. We witnessed a rapid regression followed by complete disappearance of all side effects of vemurafenib except for grade I fatigue. The biopsied skin lesions show regression of established keratoacanthoma-like lesions with signs of apoptosis. Switching from the current standard of care vemurafenib therapy to the double BRAF/MEK inhibition in BRAF mutant melanoma patients results in rapid disappearance of established proliferative skin disorders.
Resumo:
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.
Resumo:
We present the case of a 45-year-old woman with a history of multiple back surgeries to illustrate the feasibility of combining CT myelography (myeloCT) and Tc-HDP SPECT/CT bone scan in a 1-step procedure to realize a combined SPECT-myeloCT. Myelography CT and SPECT/CT were required to assess nerve root compression and pseudarthrosis, respectively. The proposed combined acquisition protocol provides information about nervous compression as well as pseudarthrosis in a 1 examination, optimizing radiation dose and patient comfort.
Resumo:
PURPOSE: Iterative algorithms introduce new challenges in the field of image quality assessment. The purpose of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT. MATERIALS AND METHODS: A QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction 50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels (D-DOG). The CHO performances were compared to the outcomes of six human observers having performed four alternative forced choice (4-AFC) tests. RESULTS: For the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher detectability index. The outcomes of human observers and results of CHO are highly correlated whatever the dose levels, the signals considered and the algorithms used when some noise is added to the CHO model. The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR. CONCLUSION: The human observers' performances can be predicted by the CHO model. This opens the way for proposing, in parallel to the standard dose report, the level of low contrast detectability expected. The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does not impair diagnostics.
Resumo:
PURPOSE: This multicenter phase III study evaluated the efficacy and safety of lapatinib, an epidermal growth factor receptor/ErbB2 inhibitor, administered concomitantly with chemoradiotherapy and as maintenance monotherapy in patients with high-risk surgically treated squamous cell carcinoma of the head and neck (SCCHN). PATIENTS AND METHODS: Patients with resected stage II to IVA SCCHN, with a surgical margin ≤ 5 mm and/or extracapsular extension, were randomly assigned to chemoradiotherapy (66 Gy total radiation dose and cisplatin 100 mg/m(2) per day administered on days 1, 22, and 43) plus placebo or lapatinib (1,500 mg per day) before and during chemoradiotherapy, followed by 12 months of maintenance monotherapy. RESULTS: Six hundred eighty-eight patients were enrolled (lapatinib, n = 346; placebo, n = 342). With a median follow-up time of 35.3 months, the study ended early because of the apparent plateauing of disease-free survival (DFS) events. Median DFS assessed by an independent review committee was 53.6 months and not reached for lapatinib and placebo, respectively (hazard ratio, 1.10; 95% CI, 0.85 to 1.43). Investigator-assessed results confirmed the independent review committee assessment. No significant differences in DFS by human papillomavirus status or overall survival were observed between treatment arms. Similar numbers of patients in both treatment arms experienced adverse events (AEs), with more patients in the lapatinib arm than the placebo arm experiencing serious AEs (48% v 40%, respectively). The most commonly observed treatment-related AEs were diarrhea and rash, both predominantly in the lapatinib arm. CONCLUSION: Addition of lapatinib to chemoradiotherapy and its use as long-term maintenance therapy does not offer any efficacy benefits and had additional toxicity compared with placebo in patients with surgically treated high-risk SCCHN.
Resumo:
Early Detection of Alzheimer's Disease Beta-amyloid Pathology -Applicability of Positron Emission Tomography with the Amyloid Radioligand 11C-PIB Accumulation of beta amyloid (Abeta) in the brain is characteristic for Alzheimer’s disease (AD). Carbon-11 labeled 2-(4’-methylaminophenyl)-6-hydroxybenzothiazole (11C-PIB) is a novel positron emission tomography (PET) amyloid imaging agent that appears to be applicable for in vivo Abeta plaque detection and quantitation. The biodistribution and radiation dosimetry of 11C-PIB were investigated in 16 healthy subjects. The reproducibility of a simplified 11C-PIB quantitation method was evaluated with a test-retest study on 6 AD patients and 4 healthy control subjects. Brain 11C-PIB uptake and its possible association with brain atrophy rates were studied over a two-year follow-up in 14 AD patients and 13 healthy controls. Nine monozygotic and 8 dizygotic twin pairs discordant for cognitive impairment and 9 unrelated controls were examined to determine whether brain Abeta accumulation could be detected with 11C-PIB PET in cognitively intact persons who are at increased genetic risk for AD. The highest absorbed radiation dose was received by the gallbladder wall (41.5 mjuGy/MBq). About 20 % of the injected radioactivity was excreted into urine, and the effective whole-body radiation dose was 4.7 mjuSv/MBq. Such a dose allows repeated scans of individual subjects. The reproducibility of the simplified 11C-PIB quantitation was good or excellent both at the regional level (VAR 0.9-5.5 %) and at the voxel level (VAR 4.2-6.4 %). 11C-PIB uptake did not increase during 24 months’ follow-up of subjects with mild or moderate AD, even though brain atrophy and cognitive decline progressed. Baseline neocortical 11C-PIB uptake predicted subsequent volumetric brain changes in healthy control subjects (r = 0.725, p = 0.005). Cognitively intact monozygotic co-twins – but not dizygotic co-twins – of memory-impaired subjects exhibited increased 11C-PIB uptake (117-121 % of control mean) in their temporal and parietal cortices and the posterior cingulate (p<0.05), when compared with unrelated controls. This increased uptake may be representative of an early AD process, and genetic factors seem to play an important role in the development of AD-like Abeta plaque pathology. 11C-PIB PET may be a useful method for patient selection and follow-up for early-phase intervention trials of novel therapeutic agents. AD might be detectable in high-risk individuals in its presymptomatic stage with 11C-PIB PET, which would have important consequences both for future diagnostics and for research on disease-modifying treatments.
Resumo:
The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.
Resumo:
The use of intensity-modulated radiotherapy (IMRT) has increased extensively in the modern radiotherapy (RT) treatments over the past two decades. Radiation dose distributions can be delivered with higher conformality with IMRT when compared to the conventional 3D-conformal radiotherapy (3D-CRT). Higher conformality and target coverage increases the probability of tumour control and decreases the normal tissue complications. The primary goal of this work is to improve and evaluate the accuracy, efficiency and delivery techniques of RT treatments by using IMRT. This study evaluated the dosimetric limitations and possibilities of IMRT in small (treatments of head-and-neck, prostate and lung cancer) and large volumes (primitive neuroectodermal tumours). The dose coverage of target volumes and the sparing of critical organs were increased with IMRT when compared to 3D-CRT. The developed split field IMRT technique was found to be safe and accurate method in craniospinal irradiations. By using IMRT in simultaneous integrated boosting of biologically defined target volumes of localized prostate cancer high doses were achievable with only small increase in the treatment complexity. Biological plan optimization increased the probability of uncomplicated control on average by 28% when compared to standard IMRT delivery. Unfortunately IMRT carries also some drawbacks. In IMRT the beam modulation is realized by splitting a large radiation field to small apertures. The smaller the beam apertures are the larger the rebuild-up and rebuild-down effects are at the tissue interfaces. The limitations to use IMRT with small apertures in the treatments of small lung tumours were investigated with dosimetric film measurements. The results confirmed that the peripheral doses of the small lung tumours were decreased as the effective field size was decreased. The studied calculation algorithms were not able to model the dose deficiency of the tumours accurately. The use of small sliding window apertures of 2 mm and 4 mm decreased the tumour peripheral dose by 6% when compared to 3D-CRT treatment plan. A direct aperture based optimization (DABO) technique was examined as a solution to decrease the treatment complexity. The DABO IMRT technique was able to achieve treatment plans equivalent with the conventional IMRT fluence based optimization techniques in the concave head-and-neck target volumes. With DABO the effective field sizes were increased and the number of MUs was reduced with a factor of two. The optimality of a treatment plan and the therapeutic ratio can be further enhanced by using dose painting based on regional radiosensitivities imaged with functional imaging methods.
Resumo:
Tässä työssä on tutkittu OL1/OL2-ydinvoimalaitosten käytetyn polttoaineen siirrossa aiheutuvaa altistusta neutronisäteilylle. Käytetty polttoaine siirretään vedellä täytetyssä käytetyn polttoaineen siirtosäiliössä Castor TVO:ssa OL1/OL2-laitoksilta käytetyn polttoaineen varastolle. Siirtotyön aikana useat eri ammattiryhmiin kuuluvat henkilöt työskentelevät siirtosäiliön välittömässä läheisyydessä, altistuen käytetystä polttoaineesta emittoituvalle fotoni- ja neutronisäteilylle. Aikaisemmista neutronisäteilyannosten mittauksista on todettu, ettei jatkuvalle altistuksen seurannalle ole ollut tarvetta. Tämän työn tarkoitus on selvittää teoreettisilla laskelmilla siirtotyöhön osallistuvan henkilön mahdollisuus saada kirjausrajan ylittävä annos neutronisäteilyä. Neutronisäteilyn annosnopeudet siirtosäiliötä ympäröivässä tilassa on laskettu yhdysvaltalaisella Monte Carlo-menetelmään perustuvalla MCNP-ohjelmalla. MCNP:llä mallinnettiin siirtosäiliö, siirtosäiliön sisältämä polttoaine ja ympäröivä tila kolmella jäähtymisajalla ja kolmella keskimääräisellä maksimipoistopalamalla. Polttoainenippujen isotooppikonsentraatiot ja säteilylähteiden voimakkuudet on laskettu Studsvik SNF-ohjelmalla. Simuloinnin perusteella voidaan todeta, ettei neutronisäteilyannosten jatkuvalle seurannalle ole tarvetta käytetyn polttoaineen siirrossa. Vaikka neutronisäteilyn annosnopeudet voivat nousta siirtosäiliön läheisyydessä suhteellisen suuriksi, ovat siirtosäiliön lähellä tehtävät työt niin lyhytaikaisia, että kirjausrajan ylitystä voidaan pitää hyvin epätodennäköisenä. Johtopäätökset varmistetaan työssä suunnitellulla mittausjärjestelyllä.
Resumo:
We examined the radioprotective effect of aminothiol 2-N-propylamine-cyclo-hexanethiol (20-PRA) on a human leukemic cell line (K562) following various radiation doses (5, 7.5 and 20 Gy) using a source of 60Co g-rays. At 5 Gy and 1 nM 20-PRA, a substantial protective effect (58%) was seen 24 h after irradiation, followed by a decrease at 48 h (11%). At the high radiation dose (20 Gy) a low protective effect was also seen (35%). In addition, the antitumorigenic potential of 10 nM 20-PRA was shown by the inhibition of crown gall formation induced by Agrobacterium tumefaciens. The radioprotective potency of 20-PRA is 105-106 times higher than that of the aminothiol WR-1065 (N-(2-mercaptoethyl)-1,3-diaminopropane) whose protective effect is in the 0.1 to 1.0 mM range.
Resumo:
In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.