981 resultados para RICE ORYZA-SATIVA
Resumo:
The objective of this work was to evaluate the physiological changes that occur in different leaves during the early and late grain-filling stages of two rice genotypes (Oryza sativa subsp. indica , BRS Pelota cultivar, and O. sativa subsp. japonica , BRS Firmeza cultivar), which present differences in grain yield potential. The plants were cultivated in greenhouse. Pigment content, chlorophyll fluorescence, electron transport and oxygen evolution rate were determined in the grain-filling stage, from the first to the forth leaf (top to bottom). Pigment content, photochemical efficiency of photosystem II and electron transport decreased significantly according to the position of leaves in 'BRS Pelota'. The BRS Firmeza cultivar shows higher pigment content and higher activity of the photosynthetic apparatus in comparison to 'BRS Pelota' during the grain-filling stage.
Resumo:
The objective of this work was to develop new irrigated rice lines tolerant to imidazolinone herbicides. The backcross breeding procedure was used to transfer the imidazolinone tolerance allele from mutant 93AS3510 to the recurrent parents 'BRS 7 Taim' and 'BRS Pelota'. Individual herbicide-tolerant plants were selected in each generation, for three backcrossings (RC1 to RC3), followed by three selfing generations (RC3F1 to RC3F3). The best four RC3F3 lines for agronomic traits were genotyped with 44 microsatellite markers. The observed conversion index of the new imidazolinone-tolerant lines varied from 91.86 to 97.67%. Pairwise genetic distance analysis between these lines and 22 accessions from the Embrapa's Rice Germplasm Bank clustered the new lines with their respective recurrent parents, but not with 'IRGA 417', which was originally used as recurrent parent to derive IRGA 422 CL, the only imidazolinone-tolerant irrigated rice cultivar recommended for cultivation in Brazil. Therefore, these lines represent new options of genetically diverse imidazolinone-tolerant rice accessions. Lines CNA10756 ('BRS Sinuelo CL') and CNA10757 will be released for cultivation in the Clearfield irrigated rice production system in Rio Grande do Sul, Brazil.
Resumo:
The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS) and no-water stress (NWS), and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand). Total transpirable soil water (TTSW), the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR) were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor) of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.
Resumo:
The objective of this work was to test long-term trends in the duration of rice development phases in Santa Maria, RS, Brazil. The duration from emergence to V3 (EM-V3), emergence to panicle differentiation (EM-R1), emergence to anthesis (EM-R4), and emergence to all grains with brown hull (EM-R9) was calculated using leaf appearance and developmental models for four rice cultivars (IRGA 421, IRGA 417, EPAGRI 109, and EEA 406), for the period from 1912 to 2011, considering three emergence dates (early, mid, and late). The trend of the time series was tested with the non-parametric Mann-Kendall test, and the magnitude of the trend was estimated with simple linear regression. Rice development has changed over the last ten decades in this location, leading to an anticipation of harvest time of 17 to 31 days, depending on the cultivar maturity group and emergence date, which is related to trends of temperature increase during the growing season. Warmer temperatures over the evaluated time period are responsible for changing rice phenology in this location, since minimum and maximum daily temperature drive the rice developmental models used.
Resumo:
The objective of this work was to determine the effect of male sterility or manual recombination on genetic variability of rice recurrent selection populations. The populations CNA-IRAT 4, with a gene for male sterility, and CNA 12, which was manually recombined, were evaluated. Genetic variability among selection cycles was estimated using14 simple sequence repeat (SSR) markers. A total of 926 plants were analyzed, including ten genitors and 180 individuals from each of the evaluated cycles (1, 2 and 5) of the population CNA-IRAT 4, and 16 genitors and 180 individuals from each of the cycles (1 and 2) of CNA 12. The analysis allowed the identification of alleles not present among the genitors for both populations, in all cycles, especially for the CNA-IRAT 4 population. These alleles resulted from unwanted fertilization with genotypes that were not originally part of the populations. The parameters of Wright's F-statistic (F IS and F IT) indicated that the manual recombination expands the genetic variability of the CNA 12 population, whereas male sterility reduces the one of CNA-IRAT 4.
Resumo:
The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.
Resumo:
The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol), besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.
Resumo:
The objective of this work was to evaluate the effect of cover crops and their desiccation times on upland rice yield and on the levels of nitrate and ammonium in a no-tillage soil. The experiment was carried out in a randomized blocks, with split plots and three replicates. Cover crops (plots) were sowed in the off-season (March 2009). In November 2009, at 30, 20, 10 and 0 days before rice sowing (split plots), herbicide was applied on the cover crops (fallow, Panicum maximum, Urochloa ruziziensis, U. brizantha and millet). Straw and soil were sampled (0 - 10 cm) at the sowing day, and after 7, 14, 21, 28 and 35 days. Straws from millet and fallow were degraded more rapidly and provided the lowest level of nitrate in the soil. Urochloa ruziziensis, U. brizantha and P. maximum produced higher amounts of dry matter, and provided the highest levels of nitrate in the soil. Millet provides the lowest nitrate/ammonium ratio and the highest upland rice yield. Desiccations carried out at 30 and 20 days before sowing had the largest levels of nitrate in the soil at the sowing date. Nitrogen content and forms in the soil are affected by cover crops and their desiccation times.
Resumo:
Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.
Resumo:
The phenotypic diversity of Magnaporthe grisea was evaluated based on leaf samples with blast lesions collected from eight commercial fields of the upland rice cultivars 'BRS Primavera' and 'BRS Bonança', during the growing seasons of 2001/2002 and 2002/2003, in Goias State. The number of M. grisea isolates from each field utilized for virulence testing varied from 28 to 47. Three different indices were used based on reaction type in the eight standard international differentials and eight Brazilian differentials. The M. grisea subpopulations of ´Primavera' and 'Bonança', as measured by Simpson, Shannon and Gleason indices, showed similar phenotypic diversities. The Simpson index was more sensitive relation than those of Shannon and Gleason for pathotype number and standard deviation utilizing Brazilian differentials. However, the Gleason index was sensitive to standard deviation for international differentials. The sample size did not significantly influence the diversity index. The two sets of differential cultivars used in this study distinguished phenotypic diversity in different ways in all of the eight subpopulations analyzed. The phenotypic diversity determined based on eight differential Brazilian cultivars was lower in commercial rice fields of 'Primavera' than in the fields of 'Bonança,' independent of the diversity index utilized, year and location. Considering the Brazilian differentials, the four subpopulations of 'BRS Primavera' did not show evenness in distribution and only one pathotype dominated in the populations. The even distribution of pathotype was observed in three subpopulations of 'BRS Bonança'. The pathotype diversity of M. grisea was determined with more precision using Brazilian differentials and Simpson index.
Resumo:
The phenotypic and genetic diversity of 77 isolates of Pyricularia grisea collected from two upland rice cultivars, Maravilha and Primavera, was studied. Isolates exhibiting compatible reaction to cv.Primavera were incompatible to cv.Maravilha and vice versa, with the exception of six isolates that were compatible to both cultivars. The virulence of isolates from cv. Maravilha on 32 test genotypes of rice was significantly higher (t = 9.09, p < 0.0001) than the isolates from cv.Primavera. A phenogram constructed from virulence data showed two main groups, one constituted mainly of isolates from cv.Primavera (97.6%) and the other of isolates from cv.Maravilha (91.17%). Rep-PCR analysis of isolates using two primers designed from sequences of Pot2 showed that isolates could be clustered broadly into two groups. The average similarity within a cluster of isolates from cv.Primavera was significantly greater than the average similarity among the isolates of cv.Maravilha (t = 5.37, p < 0.0001). There was close correspondence between clusters based on PCR and virulence data (r = 0.48, p < 0.011). The results showed that isolates of P. grisea were cultivar specific and had low phenotypic and genetic diversity.
Resumo:
A field experiment conducted with the irrigated rice cultivar BRS Formoso, to assess the efficiency of calcinated serpentinite as a silicon source on grain yield was utilized to study its effect on leaf blast severity and tissue sugar levels. The treatments consisted of five rates of calcinated serpentinite (0, 2, 4, 6, 8 Mg.ha-1) incorporated into the soil prior to planting. The leaf blast severity was reduced at the rate of 2.96% per ton of calcinated serpentinite. The total tissue sugar content decreased significantly as the rates of serpentinite applied increased (R² = 0.83). The relationship between the tissue sugar content and leaf blast severity was linear and positive (R² = 0.81). The decrease in leaf blast severity with increased rates of calcinated serpentinite was also linear (R²= 0.96) and can be ascribed to reduced sugar level.
Resumo:
The rice grain is frequently infected by a series of pathogens (fungi) during its storage, producing damages to the economy and health of humans. The aim of this study was to identify the fungal genera present in different rice genotypes and to quantify their variation during storage. Paddy, brown and milled rice fractions of Nutriar, (N) H329-5(H329) and Don Ignacio genotypes were analyzed at 4, 8 and 12 months of storage. Fungi were identified based on their micromorphological characteristics and colonies. The observed genera according to their frequency were: Alternaria, Nigrospora, Epicoccum, Bipolaris, Curvularia, Cladosporium and Fusarium (field fungi) and Penicillium and Aspergillus (storage fungi). The mycobiota composition was different depending on the grain fraction and the period of storage: field fungi were located in the hulls and bran layers, while storage fungi were mainly in the endosperm. The different genotypes showed different susceptibility to contamination.
Resumo:
Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase)-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.
Resumo:
The objective of this work was to evaluate the characteristics related to the photosynthetic ability of hybrid and inbred rice varieties, as a way to assess which of the two presented higher potential to stand out under conditions of competition. The trial was set in a greenhouse in completely randomized block design and 2 x 6 factorial scheme with four replications. Factor A consisted of rice varieties (hybrid or inbred) and factor B by competition levels. Treatments consisted in maintaining one plant of either BRS Pelota (inbred) or Inov (hybrid) variety at the center of the plot, under competition with 0, 1, 2, 3, 4 or 5 plants of the variety BRS Pelota at the periphery of the experimental unit, according to the treatment. Fifty days after emergence (DAE), sub-stomatal CO2 concentration (Ci - mmol mol-1), photosynthetic rate (A - mmol m-2 s-1) and CO2 consumed (DC - mmol mol-1) were quantified, as well as shoot dry mass(SDM).Hybrid plants present higher photosynthesis capacity than inbred plants, when competing with up to 3 times its own density. When under the same competitive intensity, hybrid plants surpass the inbred. However, it should be emphasized that, when in farm condition, the lower competitive capacity with weeds often attributed to the hybrid varieties, probably is due to their lower planting density, but if weed competition is kept at low levels, hybrid rice plants may perform in the same way or usually better than inbred plants.