973 resultados para RETINOIC ACID


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rev-erb alpha belongs to the nuclear receptor superfamily, which contains receptors for steroids, thyroid hormones, retinoic acid, and vitamin D, as well as "orphan" receptors. No ligand has been found for Rev-erb alpha to date, making it one of these orphan receptors. Similar to some other orphan receptors, Rev-erb alpha has been shown to bind DNA as a monomer on a specific sequence called a Rev-erb alpah responsive element (RevRE), but its transcriptional activity remains unclear. In this paper, we characterize a functional RevRE located in the human Rev-erb alpha promoter itself. We also present evidence that (i) Rev-erb alpha mediates transcriptional repression of its own promoter in vitro, (ii) this repressing effect strictly depends on the binding of Rev-erb alpha to its responsive element and is transferable to a heterologous promoter; and (iii) Rev-erb alpha binds to this responsive sequence as a homodimer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR gamma (mPPAR gamma) gene. This gene extends > 105 kb and gives rise to two mRNAs (mPPAR gamma 1 and mPPAR gamma 2) that differ at their 5' ends. The mPPAR gamma 2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR gamma 1 and reveals a different 5' untranslated sequence. We show that mPPAR gamma 1 mRNA is encoded by eight exons, whereas the mPPAR gamma 2 mRNA is encoded by seven exons. Most of the 5' untranslated sequence of mPPAR gamma 1 mRNA is encoded by two exons, whereas the 5' untranslated sequence and the extra 30 N-terminal amino acids of mPPAR gamma 2 are encoded by one exon, which is located between the second and third exons coding for mPPAR gamma 1. The last six exons of mPPAR gamma gene code for identical sequences in mPPAR gamma 1 and mPPAR gamma 2 isoforms. The mPPAR gamma 1 and mPPAR gamma 2 isoforms are transcribed from different promoters. The mPPAR gamma gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase the diversity of ligand and tissue-specific transcriptional responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently characterized a cardiac model of ventricular chamber defects in retinoid X receptor alpha (RXR alpha) homozygous mutant (-/-) gene-targeted mice. These mice display generalized edema, ventricular chamber hypoplasia, and muscular septal defects, and they die at embryonic day 15. To substantiate our hypothesis that the embryos are dying of cardiac pump failure, we have used digital bright-field and fluorescent video microscopy and in vivo microinjection of fluorescein-labeled albumin to analyze cardiac function. The affected embryos showed depressed ventricular function (average left ventricular area ejection fraction, 14%), ventricular septal defects, and various degrees of atrioventricular block not seen in the RXR alpha wild-type (+/+) and heterozygous (+/-) littermates (average left ventricular area ejection fraction, 50%). The molecular mechanisms involved in these ventricular defects were studied by evaluating expression of cardiac-specific genes known to be developmentally regulated. By in situ hybridization, aberrant, persistent expression of the atrial isoform of myosin light chain 2 was identified in the ventricles. We hypothesize that retinoic acid provides a critical signal mediated through the RXR alpha pathway that is required to allow progression of development of the ventricular region of the heart from its early atrial-like form to the thick-walled adult ventricle. The conduction system disturbances found in the RXR alpha -/- embryos may reflect a requirement of the developing conduction system for the RXR alpha signaling pathway, or it may be secondary to the failure of septal development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Utilizing an in vitro model system of cardiac muscle cell hypertrophy, we have identified a retinoic acid (RA)-mediated pathway that suppresses the acquisition of specific features of the hypertrophic phenotype after exposure to the alpha-adrenergic receptor agonist phenylephrine. RA at physiological concentrations suppresses the increase in cell size and induction of a genetic marker for hypertrophy, the atrial natriuretic factor (ANF) gene. RA also suppresses endothelin 1 pathways for cardiac muscle cell hypertrophy, but it does not affect the increase in cell size and ANF expression induced by serum stimulation. A trans-activation analysis using a transient transfection assay reveals that neonatal rat ventricular myocardial cells express functional RA receptors of both the retinoic acid receptor and retinoid X receptor (RAR and RXR) subtypes. Using synthetic agonists of RA, which selectively bind to RXR or RAR, our data indicate that RAR/RXR heterodimers mediate suppression of alpha-adrenergic receptor-dependent hypertrophy. These results suggest the possibility that a pathway for suppression of hypertrophy may exist in vivo, which may have potential therapeutic value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a strategy to generate mutant genes in mammalian cells in a conditional manner by employing a fusion protein, Cre-ER, consisting of the loxP site-specific Cre recombinase linked to the ligand-binding domain of the human estrogen receptor. We have established homozygous retinoid X receptor alpha-negative (RXR alpha-/-) F9 embryonal carcinoma cells constitutively expressing Cre-ER and have shown that estradiol or the estrogen agonist/antagonist 4-hydroxytamoxifen efficiently induced the recombinase activity, whereas no activity was detected in the absence of ligand or in the presence of the antiestrogen ICI 164,384. Furthermore, using a targeting vector containing a selection marker flanked by loxP sites, we have inactivated one retinoic acid receptor alpha allele in such a line, demonstrating that the presence of the recombinase does not inhibit homologous recombination. Combining this conditional site-specific recombination system with tissue-specific expression of Cre-ER may allow modification of the mammalian genome in vivo in a spatiotemporally regulated manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report that methoprene and its derivatives can stimulate gene transcription in vertebrates by acting through the retinoic acid-responsive transcription factors, the retinoid X receptors (RXRs). Methoprene is an insect growth regulator in domestic and agricultural use as a pesticide. At least one metabolite of methoprene, methoprene acid, directly binds to RXR and is a transcriptional activator in both insect and mammalian cells. Unlike the endogenous RXR ligand, 9-cis-retinoic acid, this activity is RXR-specific; the methoprene derivatives do not activate the retinoic acid receptor pathway. Methoprene is a juvenile hormone analog that acts to retain juvenile characteristics during insect growth, preventing metamorphosis into an adult, and it has been shown to have ovicidal properties in some insects. Thus, a pesticide that mimics the action of juvenile hormone in insects can also activate a mammalian retinoid-responsive pathway. This finding provides a basis through which the potential bioactivity of substances exposed to the environment may be reexamined and points the way for discovery of new receptor ligands in both insects and vertebrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Receptores purinérgicos e canais de cálcio voltagem-dependentes estão envolvidos em diversos processos biológicos como na gastrulação, durante o desenvolvimento embrionário, e na diferenciação neural. Quando ativados, canais de cálcio voltagem-dependentes e receptores purinérgicos do tipo P2, ativados por nucleotídeos, desencadeiam transientes de cálcio intracelulares controlando diversos processos biológicos. Neste trabalho, nós estudamos a participação de canais de cálcio voltagem-dependentes e receptores do tipo P2 na geração de transientes de cálcio espontâneos e sua regulação na expressão de fatores de transcrição relacionados com a neurogênese utilizando como modelo células tronco (CTE) induzidas à diferenciação em células tronco neurais (NSC) com ácido retinóico. Descrevemos que CTE indiferenciadas podem ter a proliferação acelerada pela ativação de receptores P2X7, enquanto que a expressão e a atividade desse receptor precisam ser inibidas para o progresso da diferenciação em neuroblasto. Além disso, ao longo da diferenciação neural, por análise em tempo real dos níveis de cálcio intracelular livre identificamos 3 padrões de oscilações espontâneas de cálcio (onda, pico e unique), e mostramos que ondas e picos tiveram a frequência e amplitude aumentadas conforme o andamento da diferenciação. Células tratadas com o inibidor do receptor de inositol 1,4,5-trifosfato (IP3R), Xestospongin C, apresentaram picos mas não ondas, indicando que ondas dependem exclusivamente de cálcio oriundo do retículo endoplasmático pela ativação de IP3R. NSC de telencéfalo de embrião de camundongos transgênicos ou pré-diferenciadas de CTE tratadas com Bz-ATP, o agonista do receptor P2X7, e com 2SUTP, agonista de P2Y2 e P2Y4, aumentaram a frequência e a amplitude das oscilações espontâneas de cálcio do tipo pico. Dados, obtidos por microscopia de luminescência, da expressão em tempo real de gene repórter luciferase fusionado à Mash1 e Ngn2 revelou que a ativação dos receptores P2Y2/P2Y4 aumentou a expressão estável de Mash1 enquanto que ativação do receptor P2X7 levou ao aumento de Ngn2. Além disso, células na presença do quelante de cálcio extracelular (EGTA) ou do depletor dos estoques intracelulares de cálcio do retículo endoplasmático (thapsigargin) apresentaram redução na expressão de Mash1 e Ngn2, indicando que ambos são regulados pela sinalização de cálcio. A investigação dos canais de cálcio voltagem-dependentes demonstrou que o influxo de cálcio gerado por despolarização da membrana de NSC diferenciadas de CTE é decorrente da ativação de canais de cálcio voltagem-dependentes do tipo L. Além disso, esse influxo pode controlar o destino celular por estabilizar expressão de Mash1 e induzir a diferenciação neuronal por fosforilação e translocação do fator de transcrição CREB. Esses dados sugerem que os receptores P2X7, P2Y2, P2Y4 e canais de cálcio voltagem-dependentes do tipo L podem modular as oscilações espontâneas de cálcio durante a diferenciação neural e consequentemente alteram o padrão de expressão de Mash1 e Ngn2 favorecendo a decisão do destino celular neuronal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During embryonic development, formation of individual vertebrae requires that the paraxial mesoderm becomes divided into regular segmental units known as somites. Somites are sequentially formed at the anterior end of the presomitic mesoderm (PSM) resulting from functional interactions between the oscillatory activity of signals promoting segmentation and a moving wavefront of tissue competence to those signals, eventually generating a constant flow of new somites at regular intervals. According to the current model for somitogenesis, the wavefront results from the combined activity of two opposing functional gradients in the PSM involving the Fgf, Wnt and retinoic acid (RA) signaling pathways. Here, I use published data to evaluate the wavefront model. A critical analysis of those studies seems to support a role for Wnt signaling, but raise doubts regarding the extent to which Fgf and RA signaling contribute to this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During limb development, expression of the TALE homeobox transcription factor Meis1 is activated by retinoic acid in the proximal-most limb bud regions, which give rise to the upper forelimb and hindlimb. Early subdivision of the limb bud into proximal Meis-positive and distal Meis-negative domains is necessary for correct proximo-distal (P-D) limb development in the chick, since ectopic Meis1 overexpression abolishes distal limb structures, produces a proximal shift of limb identities along the P-D axis, and proximalizes distal limb cell affinity properties. To determine whether Meis activity is also required for P-D limb specification in mammals, we generated transgenic mice ectopically expressing Meis1 in the distal limb mesenchyme under the control of the Msx2 promoter. Msx2:Meis1 transgenic mice display altered P-D patterning and shifted P-D Hox gene expression domains, similar to those previously described for the chicken. Meis proteins function in cooperation with PBX factors, another TALE homeodomain subfamily. Meis-Pbx interaction is required for nuclear localization of both proteins in cell culture, and is important for their DNA-binding and transactivation efficiency. During limb development, Pbx1 nuclear expression correlates with the Meis expression domain, and Pbx1 has been proposed as the main Meis partner in this context; however, we found that Pbx1 deficiency did not modify the limb phenotype of Msx2:Meis1 mice. Our results indicate a conserved role of Meis activity in P-D specification of the tetrapod limb and suggest that Pbx function in this context is either not required or is provided by partners other than Pbx1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertebrate limb induction is triggered in the lateral plate mesoderm (LPM) by a cascade of signaling events originating in the axial mesoderm. While it is known that Fgf, Wnt and retinoic acid (RA) signals are involved in this cascade, their precise regulatory hierarchy has not been determined in any species. tbx5 is the earliest gene expressed in the limb bud mesenchyme. Recently, another transcription factor, Prdm1, has been shown to be crucial for zebrafish forelimb development. Here, we show that Prdm1 is downstream of RA, Wnt2b and Tbx5 activity. We find that RA activity, but not Fgf signaling, is necessary for wnt2b expression. Fgf signaling is required for prdm1 expression in the fin bud, but is not necessary for the initiation of tbx5 expression. We propose a model in which RA signaling from the somitic mesoderm leads to activation of wnt2b expression in the intermediate mesoderm, which then signals to the LPM to trigger tbx5 expression. tbx5 is required for Fgf signaling in the limb bud leading to activation of prdm1 expression, which in turn is required for downstream activation of fgf10 expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms by which cells obtain instructions to precisely re-create the missing parts of an organ remain an unresolved question in regenerative biology. Urodele limb regeneration is a powerful model in which to study these mechanisms. Following limb amputation, blastema cells interpret the proximal-most positional identity in the stump to reproduce missing parts faithfully. Classical experiments showed the ability of retinoic acid (RA) to proximalize blastema positional values. Meis homeobox genes are involved in RA-dependent specification of proximal cell identity during limb development. To understand the molecular basis for specifying proximal positional identities during regeneration, we isolated the axolotl Meis homeobox family. Axolotl Meis genes are RA-regulated during both regeneration and embryonic limb development. During limb regeneration, Meis overexpression relocates distal blastema cells to more proximal locations, whereas Meis knockdown inhibits RA proximalization of limb blastemas. Meis genes are thus crucial targets of RA proximalizing activity on blastema cells.