908 resultados para RESONANCE RAMAN-SPECTROSCOPY
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Among the many methods developed for the synthesis of titanium dioxide, cathodic electrosynthesis has not received much attention because the resulting amorphous oxy-hydroxide matrix demands a further thermal annealing step to be transformed into crystalline titania. However, the possibility of filling deep recessed templates by the control of the solidliquid interface makes it a potentially suitable technique for the fabrication of porous scaffolds for photovoltaics and photocatalysis. Furthermore, a careful control of the crystallization process enables the growth of larger grains with lower density of grain boundaries, which act as electron traps that slow down electronic transport and promote charge recombination. In this report, well crystallized titania deposits were obtained by thermal annealing of amorphous deposits fabricated by cathodically assisted electrosynthesis on indium-tin oxide (ITO)substrates. The combined use of Raman spectroscopy and X-ray diffraction showed that the crystallization process is more intricate than previously assumed. It is shown that the amorphous matrix evolves into a rutile-free mixture of brookite and anatase at temperatures as low as 200 degrees C that persists up to 800 degrees C, when pure anatase dominates. The amount of brookite in the brookiteanatase mixture reaches a maximum at 400 degrees C. This very simple method for obtaining a brookiteanatase mixture and the ability to tune their proportions by thermal annealing is a promising alternative whose potential for solar cells and photocatalysis deserves a careful evaluation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-beta-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans -> cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.
Resumo:
This work investigates pure ionic liquids (ILs) derived from an imidazolium ring with different carbonic chains and halides or bis(trifluoromethanesulfonilimide) (TFSI-) as anions, using X-ray absorption near edge spectroscopy (XANES) at different energies (N, S, O, F, and Cl edges) to probe the interionic interactions. XANES data show that the interaction with the anion is weaker when the cation is an imidazolium than when the salt is formed by smaller cations, as lithium, independently of the length of the carbonic chain attached to the imidazolium cation. The results also show that, for all studied as, it is not observed any influence of the anion on the XANES spectra of the cation, nor the opposite. 1-Methylimidazolium with Cl-, a small and strongly coordinating anion, presents in the N K XANES spectrum a splitting of the band corresponding to nitrogen in the imidazolic ring, indicating two different chemical environments. For this cation with TFSI-, on the contrary, this splitting was not observed, showing that the anion has a weaker interaction with the imidazolic ring, even without a lateral carbonic chain.
Resumo:
We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
USE OF THE LINEAR LIGHT SENSOR ILX554 IN OPTICAL SPECTROSCOPY. This technical note describes the construction of a low-cost optical detector. This device is composed by a high-sensitive linear light sensor (model ILX554) and a microcontroller. The performance or the detector was demonstrated by the detection of emission and Raman spectra of the several atomic systems and the results reproduce those found in the literature.
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.