895 resultados para REINFORCED PLA SCAFFOLDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though there has been a great deal of work concerning the development of natural fibers in reinforced starch-based composites, there is still more to be done. In general, cellulose fibers have lower strength than glass fibers; however, their specific strength is not far from that of fiberglass. In this work, alpha-fibers were obtained from alpha-grass through a mild cooking process. The fibers were used to reinforce a starch-based biopolymer. Composites including 5 to 35% (w/w) alpha-grass fibers in their formulation were prepared, tested, and subsequently compared with those of wood- and fiberglass-reinforced polypropylene (PP). The term “high-performance” refers to the tensile strength of the studied composites and is mainly due to a good interphase, a good dispersion of the fibers inside the matrix, and a good aspect ratio. The tensile strength of the composites showed a linear evolution for fiber contents up to 35% (w/w). The strain at break of the composites decreased with the fiber content and showed the stiffening effects of the reinforcement. The prepared composites showed high mechanical properties, even approaching those of glass fiber reinforced composites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively high aspect ratio, good specific stiffness and strength, low density, low cost, and less variability than other natural fibers of such those from annual crops. In this work, composites from polypropylene and stone groundwood fibers from softwood were prepared and mechanically characterized under tensile loads. The Young’s moduli of the ensuing composites were analyzed and their micromechanics aspects evaluated. The reinforcing effect of stone groundwood fibers was compared to that of conventional reinforcement such fiberglass. The Halpin-Tsai model with the modification proposed by Tsai-Pagano accounted fairly for the behavior of PP composites reinforced with stone groundwood fibers. It was also demonstrated that the aspect ratio of the reinforcement plays a role in the Young’s modulus of injection molded specimens

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pla de comunicació extern i de xarxes socials de la Biblioteca del Campus del Baix Llobregat (BCBL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ningú no dubte ja del canvi de mentalitat que s’ha produït en els darrers anys en els compradors pel què fa al mercat de l’automòbil. La seguretat i el respecte per el medi ambient, són actualment dos dels factors claus que el consumidor té en compte a l’hora de comprar un vehicle. D’altra banda en els darrers anys la Unió Europea, ha fixat tota una sèrie normatives per tal de reduir les emissions nocives a l’atmosfera. Així doncs, més seguretat i menys emissions, signifiquen vehicles que incorporin components i sistemas cada cop més sofisticats, els quals, a la vegada, necessiten de bancs d’assaig i equips de test per tal de ser validats. Aquest fet ha provocat una revolució dins dels sistemes de test per a vehicles, per als quals han augmentat enormement les exigències en quan a precisions i repetibilitat per tal d’intentar reproduir, amb la màxima fiabilitat possible, les condicions de treball que hauran de suportar els components durant el seu ús real. Les característiques dels motors elèctrics, resulten ideals per a accionar aquest tipus d’aplicacions, ja que permeten un control del parell molt acurat i una repetibilitat quasi perfecte enfront d’altres sistemas utilitzats fins no fa massa temps. Aquesta demanda creixent d’aquest tipus de màquines elèctriques, obra una nova oportunitat de negoci per a les empreses fabricants de motors elèctrics. L’objectiu principal d’aquest treball és identificar i satisfer les necessitats dels clients, dins d’un mercat industrial concret: el mercat dels motors elèctrics per a bancs de proves de components per a la indústria de l’automoció. La fita és doncs la de proporcionar les eines necessàries per tal de que una empresa, fabricant de motors elèctrics de velocitat variable, pugui realitzar el disseny, desenvolupament i llançament comercial d’un nou tipus de motor, específicament pensat per aquest mercat, amb les màximes garanties d’èxit. Com a principal conclusió, el treball argumenta que el nou producte representa una oportunitat de negoci força atractiva i rendible per a l’empresa, i permetrà diversificar la oferta de la companyia cap a un nou sector fins ara no explotat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquesta recerca es presenta el Pla d’Intervenció Motivacional (PIM) per subjectes que han de realitzar un programa formatiu (PF) en matèria de violència domèstica com a mesura penal alternativa. La finalitat principal d’aquest programa motivacional és que els usuaris iniciïn el PF en condicions òptimes per així augmentar l’eficàcia de la mesura i la seva reinserció en la societat. El PIM s’ha fonamentat en els models teòrics sobre motivació al canvi i en les tècniques terapèutiques que resulten més rellevants i eficaces, segons la revisió bibliogràfica exhaustiva feta en la recerca El PIM és un programa d’intervenció individualitzat amb una duració d‘entre 4 i 6 sessions, segons la intensitat de la seva aplicació. El programa vol ajudar als participants a identificar els aspectes positius derivats d’aquest canvi i les seves capacitats personals per aconseguir-lo. Per portar-ho terme, s’utilitza un estil terapèutic basat en el diàleg socràtic mitjançant el qual es treballen els aspectes següents: resolució de l’ambivalència, sentiment d’autoeficàcia, identificació d’objectius específics i desenvolupament d’un pla d’acció alternatiu. Mitjançant l’elaboració dels exercicis i tasques descrits en aquesta memòria, el professional guia a l’usuari per aconseguir augmentar la seva motivació per canviar la conducta problemàtica que ha estat objecte de la imposició de la mesura penal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S’arriba a 4 conclusions de l’anàlisi del PDU estudiat. 1- Respecte al nou traçat de la C-55, s’entén necessari determinat desplaçament en sentit sud que alliberi territori no malmès i de futur creixement.2- Respecte al pont sobre el riu Llobregat, és prioritari per poder connectar dues parts de la població travessada per múltiples infraestructures i elements naturals. 3- Respecte al vial connexió B40-B224, ha de descarregar clarament el trànsit procedent de la zona industrial cap a la A2, oferint sortida cap a la AP7 i la B40, és un eix reconegudament favorable.4- Respecte a l’àmbit de ponent paral•lel a la futura B40 es posa de relleu les potencialitats d’aquesta part del territori com reserva natural, en conseqüència, qualsevol actuació que es pogués plantejar en aquest àmbit, caldria orientar-la des de la perspectiva d’una zona o via de servei de la B40.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objecte del projecte és la definició de les obres i valoració pressupostària de consolidació de l’accés al pont de maçoneria sobre els FGC que connecta el camí de Can Gatxet i l’Av. del Carril, dintre de l’actuació general de millora de la mobilitat a l’entorn de la carretera de Vallvidrera en l’encreuament amb els FGC a Sant Cugat del Vallès.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of chloride deposition rate on concrete using an atmospheric corrosion approach is rarely studied in the literature. Seven exposure sites were selected in Havana City, Cuba, for exposure of reinforced concrete samples. Two significantly different atmospheric corrosivity levels with respect to corrosion of steel reinforced concrete were observed after two years of exposure depending on atmospheric chloride deposition and w/c ratio of the concrete. Changes in corrosion current are related to changes in chloride penetration and chloride atmospheric deposition. The influence of sulphur compound deposition could also be a parameter to consider in atmospheric corrosion of steel reinforced concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cranial bone reconstructions are necessary for correcting large skull bone defects due to trauma, tumors, infections and craniotomies. Traditional synthetic implant materials include solid or mesh titanium, various plastics and ceramics. Recently, biostable glass-fiber reinforced composites (FRC), which are based on bifunctional methacrylate resin, were introduced as novel implant solution. FRCs were originally developed and clinically used in dental applications. As a result of further in vitro and in vivo testing, these composites were also approved for clinical use in cranial surgery. To date, reconstructions of large bone defects were performed in 35 patients. This thesis is dedicated to the development of a novel FRC-based implant for cranial reconstructions. The proposed multi-component implant consists of three main parts: (i) porous FRC structure; (ii) bioactive glass granules embedded between FRC layers and (iii) a silver-polysaccharide nanocomposite coating. The porosity of the FRC structure should allow bone ingrowth. Bioactive glass as an osteopromotive material is expected to stimulate the formation of new bone. The polysaccharide coating is expected to prevent bacterial colonization of the implant. The FRC implants developed in this study are based on the porous network of randomly-oriented E-glass fibers bound together by non-resorbable photopolymerizable methacrylate resin. These structures had a total porosity of 10–70 volume %, of which > 70% were open pores. The pore sizes > 100 μm were in the biologically-relevant range (50-400 μm), which is essential for vascularization and bone ingrowth. Bone ingrowth into these structures was simulated by imbedding of porous FRC specimens in gypsum. Results of push-out tests indicated the increase in the shear strength and fracture toughness of the interface with the increase in the total porosity of FRC specimens. The osteopromotive effect of bioactive glass is based on its dissolution in the physiological environment. Here, calcium and phosphate ions, released from the glass, precipitated on the glass surface and its proximity (the FRC) and formed bone-like apatite. The biomineralization of the FRC structure, due to the bioactive glass reactions, was studied in Simulated Body Fluid (SBF) in static and dynamic conditions. An antimicrobial, non-cytotoxic polysaccharide coating, containing silver nanoparticles, was obtained through strong electrostatic interactions with the surface of FRC. In in vitro conditions the lactose-modified chitosan (chitlac) coating showed no signs of degradation within seven days of exposure to lysozyme or one day to hydrogen peroxide (H2O2). The antimicrobial efficacy of the coating was tested against Staphylococcus aureus and Pseudomonas aeruginosa. The contact-active coating had an excellent short time antimicrobial effect. The coating neither affected the initial adhesion of microorganisms to the implant surface nor the biofilm formation after 24 h and 72 h of incubation. Silver ions released to the aqueous environment led to a reduction of bacterial growth in the culture medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate the possibility to enhance certain qualities of facial prostheses. Polymethyl methacrylate is still being used as base mate¬rial or clip carrier material, but it is hard and heavy, and debonding of the silicone from the acrylic base material is a frequent problem. This thesis aims to evaluate the use of fiber-reinforced composite (FRC) as framework material for maxillofacial silicone prostheses. FRC has been used as reinforcement in removable and fixed partial dentures since the 1990s. This material is lightweight and can be fabricated to compress the margins of the prosthesis slightly, to keep it tightly against the skin during jaw movements and facial expressions. Additionally, the use of a thermochromic pigment, colorless in room temperature and red in a cold environment, was studied in order to evaluate the possibility of using this color changing pigment in facial prostheses to mimic the color change of facial skin in cold weather. The tensile bond strength between pre-impregnated, unidirectional FRC and maxillofacial silicone elastomer was studied. Three different bonding agents or primers were compared. Bond strength was improved by one of the primers and by roughening the surface. The effect of a skin compressing glass fiber-reinforced composite framework on facial skin blood flow was studied by using a face mask, constructed with a compression pad corresponding to the outer margin of a glass fiber-reinforced framework beam of a facial prosthesis. The skin blood flow of ten healthy volunteers, aged 23-25 years, was measured during touch, light, and moderate compression of the skin, by using laser Doppler imaging technique. None of the compressions showed any marked effects on local skin blood flow. There were no significant differences between blood flow during compression and at baseline. Maxillofacial silicone elastomer was colored intrinsically with conventional color pigments: a control group containing only conventional pigments was compared to two test groups with 0.2 wt% and 0.6 wt% thermochromic pigment added. The color of the material was measured with a spectrophotometer in room temperature and after storage in a freezer. The color stability of the maxillofacial silicone elastomer colored with thermo¬chromic pigment was evaluated by artificial aging. The color dif¬ference of the L* (lightness) and a* values (redness), comparing color after the samples were stored at room temperature and in a freezer (-19°C), was statistically significant for both 0.2 wt% and 0.6 wt% thermo¬chromic pigment groups. The differences in the b* values (yellowness) were statistically significant for the 0.6 wt% group. Exposure to ultraviolet (UV) radiation led to visually noticeable and statistically signifi¬cant color changes (ΔE) in all color values in both test groups. The specimens containing thermochromic pigment were very sensitive to UV radiation. In conclusion, a framework of fiber-reinforced composite can successfully be bonded to maxillofacial silicone elastomer, and a framework beam, compressing the facial skin, did not remarkably alter the skin blood flow on healthy, young adults. The thermochromic pigment showed color change in maxillofacial silicone elastomer. However, artificial aging showed that it was too sensitive to UV radiation to be used, as such, in maxillofacial prostheses.