889 resultados para REGRESSION TREES
Resumo:
Summary
Resumo:
Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance
Resumo:
Trees are a great bank of data, named sometimes for this reason as the "silentwitnesses" of the past. Due to annual formation of rings, which is normally influenced directly by of climate parameters (generally changes in temperature and moisture or precipitation) and other environmental factors; these changes, occurred in the past, are"written" in the tree "archives" and can be "decoded" in order to interpret what hadhappened before, mainly applied for the past climate reconstruction.Using dendrochronological methods for obtaining samples of Pinus nigra fromthe Catalonian PrePirineous region, the cores of 15 trees with total time spine of about 100 - 250 years were analyzed for the tree ring width (TRW) patterns and had quite high correlation between them (0.71 ¿ 0.84), corresponding to a common behaviour for the environmental changes in their annual growth.After different trials with raw TRW data for standardization in order to take outthe negative exponential growth curve dependency, the best method of doubledetrending (power transformation and smoothing line of 32 years) were selected for obtaining the indexes for further analysis.Analyzing the cross-correlations between obtained tree ring width indexes andclimate data, significant correlations (p<0.05) were observed in some lags, as forexample, annual precipitation in lag -1 (previous year) had negative correlation with TRW growth in the Pallars region. Significant correlation coefficients are between 0.27- 0.51 (with positive or negative signs) for many cases; as for recent (but very short period) climate data of Seu d¿Urgell meteorological station, some significant correlation coefficients were observed, of the order of 0.9.These results confirm the hypothesis of using dendrochronological data as aclimate signal for further analysis, such as reconstruction of climate in the past orprediction in the future for the same locality.
Resumo:
This booklet takes a look at the role trees and woodlands play in the development of Iowa's history. It identifies the individual and groups of trees that have historical significance in the state.
Resumo:
Summary
Resumo:
This document describes the Iowa Big Tree Program which is designed to locate the largest tree of various species in Iowa. It includes the Iowa big tree list of 1997 with information on the species/year nominated, circumference, height, points and the owner/reporter/location.
Resumo:
DRIS, an Diagnosis and Recommendation Integrated System, is a tool to evaluate the nutritional status of plants. Different DRIS formulas have been proposed to improve the efficiency of the crop nutrition diagnoses. The objective of this study was to compare the nutritional diagnosis of the formulas of Beaufils (1973), of Jones (1981) and of Elwali and Gascho (1984), based on the degree of agreement in commercial orchards of Theobrama grandiflorum trees. Leaf samples of 5 to 18 year-old cupuaçu trees were collected from 153 commercial orchards in agroforestry and monoculture systems in the state of Rondonia, Brazil. Bivariate relationships between nutrition concentrations in healthy trees were used to calculate DRIS norms. DRIS indices were calculated based on the different formulas and interpreted by the Potential Fertilizer Response method, in five categories. The DRIS norms, DRIS index calculations and their interpretations were developed using the DRIS Cupuaçu computer program (www.dris.com.br). The different DRIS formulas resulted in similar diagnoses with a degree of agreement of > 90% for the nutrients N, P, K, Ca, and Mg.
Resumo:
Summary
Resumo:
BACKGROUND: Whole pelvis intensity modulated radiotherapy (IMRT) is increasingly being used to treat cervical cancer aiming to reduce side effects. Encouraged by this, some groups have proposed the use of simultaneous integrated boost (SIB) to target the tumor, either to get a higher tumoricidal effect or to replace brachytherapy. Nevertheless, physiological organ movement and rapid tumor regression throughout treatment might substantially reduce any benefit of this approach. PURPOSE: To evaluate the clinical target volume - simultaneous integrated boost (CTV-SIB) regression and motion during chemo-radiotherapy (CRT) for cervical cancer, and to monitor treatment progress dosimetrically and volumetrically to ensure treatment goals are met. METHODS AND MATERIALS: Ten patients treated with standard doses of CRT and brachytherapy were retrospectively re-planned using a helical Tomotherapy - SIB technique for the hypothetical scenario of this feasibility study. Target and organs at risk (OAR) were contoured on deformable fused planning-computed tomography and megavoltage computed tomography images. The CTV-SIB volume regression was determined. The center of mass (CM) was used to evaluate the degree of motion. The Dice's similarity coefficient (DSC) was used to assess the spatial overlap of CTV-SIBs between scans. A cumulative dose-volume histogram modeled estimated delivered doses. RESULTS: The CTV-SIB relative reduction was between 31 and 70%. The mean maximum CM change was 12.5, 9, and 3 mm in the superior-inferior, antero-posterior, and right-left dimensions, respectively. The CTV-SIB-DSC approached 1 in the first week of treatment, indicating almost perfect overlap. CTV-SIB-DSC regressed linearly during therapy, and by the end of treatment was 0.5, indicating 50% discordance. Two patients received less than 95% of the prescribed dose. Much higher doses to the OAR were observed. A multiple regression analysis showed a significant interaction between CTV-SIB reduction and OAR dose increase. CONCLUSIONS: The CTV-SIB had important regression and motion during CRT, receiving lower therapeutic doses than expected. The OAR had unpredictable shifts and received higher doses. The use of SIB without frequent adaptation of the treatment plan exposes cervical cancer patients to an unpredictable risk of under-dosing the target and/or overdosing adjacent critical structures. In that scenario, brachytherapy continues to be the gold standard approach.
Resumo:
Summary
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
ABSTRACT An alternative for recovery of areas degraded by coal mining is revegetation with rapidly growing leguminous trees, which often do not establish in low fertility soils. The objective of this study was to evaluate the efficiency of native rhizobia isolated from coal mining areas in the nodulation and growth of leguminous trees. We isolated 19 strains of rhizobia from a degraded soil near Criciúma, SC, Brazil, and evaluated the nodulation and growth-promoting capacity of the inoculated isolates for bracatinga (Mimosa scabrella), maricá (M. bimucronata) and angico-vermelho (Parapiptadenia rigida). Isolates UFSC-B2, B6, B8, B9, B11 and B16 were able to nodulate bracatinga, providing average increases of 165 % in shoot dry matter, with a significant contribution to N accumulation. Isolates UFSC-B5, B12, and M8 favored nodulation and growth of maricá, especially isolate UFSC-B12, which promoted increases of 370 % in N accumulation compared to treatment with N fertilizer. All strains were inefficient in promoting growth and N uptake by angico-vermelho. In conclusion, isolation and use of selected rhizobia for bracatinga and maricá plant inoculation can contribute to the growth and accumulation of N, with prospects for use in programs for revegetation of degraded soils in coal mining areas.