973 resultados para REDUCTASE-SACCHAROPINE DEHYDROGENASE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Submandibular glands of male rats were homogenized with 33 mM sodium potassium phosphate buffer, pH 6.5, containing 1 mM MgCl2 and 0.1 mM DTT and purified with ammonium sulphate, phosphocellulose chromatography, eluted with KC1 0.5 M, followed by Blue Sepharose CL-6B chromatography, eluted with NADH 0.5 mM. The enzyme kepts stable for 60 days when stored at -15-degrees-C in 33 mM phosphate buffer. In other experiment the enzyme was purified by oxamate-agarose chromatography from a crude extract of submandibular gland and the results obtained were better than by phosphocellulose and Sepharose CL-6B chromatography. The Km values for pyruvate. NADH, lactate and NAD+ were established. Sodium oxamate at 0.1 and 0.9 mM concentrations inhibited the LDH activity by 40 and 85%, respectively (competitive); with sodium oxalate the inhibition was of 30% (uncompetitive) and with 3-acetyl pyridine adenine dinucleotide was 80%.
Resumo:
Shikimate dehydrogenase (SDH, EC 1.1.1.25) extracted from cucumber pulp (Cucumis sativus L.) was purified 7-fold by precipitation with ammonium sulfate and elution from columns of Sephadex G-25, DEAE-cellulose, and hydroxyapatite. Two activity bands were detected on polyacrylamide gel electrophoresis at the last purification step. pH optimum was 8.7, and molecular weight of 45 000 was estimated on a Sephadex G-100 column. SDH was inhibited competitively by protocatechuic acid with a K(i) value of 2 x 10-4 M. K(m) values of 6 x 10-5 and 1 x 10-5 M were determined for shikimic acid and NADP+, respectively. The enzyme was completely inhibited by HgCl2 and p-(chloromercuri)benzoate (PCMB). NaCl and KCl showed partial protection against inhibition by PCMB. Heat inactivation between 50 and 55-degrees-C was biphasic, and the enzyme was completely inactivated after 10 min at 60-degrees-C. Incubation of SDH with either NADP+ or shikimic acid protected the enzyme against heat inactivation.
Resumo:
A modified spectrophotometric method for serum glutamic-oxaloacetic transaminase (SGOT) assay was developed. A crude cell-free extract from Streptomyces aureofaciens which showed a high level of malate dehydrogenase (MDH) activity (E.C. 1.1.1.37) was used as the enzymatic indicator. The lyophilized microbial preparation was used without previous purification and was quite stable under refrigeration for one year. Serum sample assays using both the method utilizing the crude cell extract and an enzymatic commercial kit showed good correlation.
Resumo:
An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
1. Adrenal ectopic tissue has been detected in the paragonadal region of normal women. In patients with congenital adrenal hyperplasia due to 21-hydroxylase (21-OH) deficiency, the manifestation of hyperplasia of paragonadal accessory adrenal tissue has been usually reported to occur in males. Probably, this is the first report of a female with 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency with ectopic adrenal tissue in ovaries. However, the occurrence of hyperplasia of adrenal rests among women with classical congenital adrenal hyperplasia may not be rare, especially among patients with a late diagnosis.2. We report a woman with 3beta-HSD deficiency whose definitive diagnosis was made late at 41 years of age immediately before surgery for the removal of a uterine myoma. During surgery, exploration of the abdominal cavity revealed the presence of bilateral accessory adrenal tissue in the ovaries and in the para-aortic region. The patient had extremely high levels of ACTH (137 pmol/l), DHEA (901.0 nmol/l), DHEA-S (55.9 mumol/l), androstenedione (70.2 nmol/l), testosterone (23.0 nmol/l) and 17alpha-hydroxypregnenolone (234.4 nmol/l) suggesting 3beta-HSD deficiency.3. In view of these elevated androgen levels, with an absolute predominance of DHEA and DHEA-S, we evaluated the effect of this hormonal profile on carbohydrate tolerance and insulin response to glucose ingestion.4. The patient presented normal glucose tolerance but her insulin response was lower than that of 14 normal women (area under the curve, 3beta-HSD = 17,680 vs 50,034 pmol/l for the control group over a period of 3 h after glucose ingestion).5. These results support recent data suggesting that patients with increased serum DHEA and DHEA-S levels do not present resistance to insulin.
Resumo:
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (121V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We assessed the effect of a recently described mutation in the MTHFR gene (1298 A --> C) on the risk of deep venous thrombosis (DVT) by determining its prevalence in 190 patients with verified DVT and in age-, race- and gender-matched controls. MTHFR 1298 A --> C was found in 42.1% of patients and in 41.1% of controls. The OR for venous thrombosis was 1.07 (95% CI 0.70-1.65) for heterozygotes and 0.83 (95% CI 0.33-2.08) for homozygotes. The OR for the factor V Leiden (FVL) mutation was 3.40 (95% CI 1.22-9.48), for FII 20210 G --> A was 5.22 (95% CI 1.12-24.2) and for MTHFR 677 C --> T, 1.24 (95% CI 0.82-1.87). No significant increased risk for venous thrombosis was found when MTHFR 1298 A --> C was coinherited with FVL (OR 2.85, 95% CI 0.88-9.23), FIT 20210 G --> A (OR 7.19, 95% CT 0.87-59.4) or MTHFR 677 C --> T (OR 1.44, 95% CT 0.71-2.92). These data do not support a critical role of MTHFR 1298 A --> C in the predisposition to DVT.
Resumo:
The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. The P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. The recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.
Resumo:
Alcohol dehydrogenases (ADHs) are oxidoreductases present in animal tissues, plants, and microorganisms. These enzymes attract major scientific interest for the evolutionary perspectives, afforded by their wide occurrence in nature, and for their use in synthesis, thanks to their broad substrate specificity and stereoselectivity. In the present study, the standardization of the activity of the alcohol dehydrogenase from baker's yeast was accomplished, and the pH and temperature stability showed, that the enzyme presented a high stability to pH 6.0-7.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The assays of ethanol (detection range 1-5 mM or 4.6 x 10(-2) to 23.0 x 10(-2) g/L) in different samples in alcoholic beverages, presented a maximum deviation of only 7.2%. The standard curve and the analytic curve of this method meet the conditions of precision, sensitivity, simplicity, and low cost, required for a useable analytical method. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
1. In order to investigate the effect of aging on the erythrocyte glutathione system, total glutathione (GSH), glutathione reductase (GSH-red) and glutathione peroxidase (GSH-px) levels were measured in erythrocytes from 33 young (mean age = 30.5 +/- 9.7 years) and 28 aged (mean age = 68.9 +/- 11.4 years) healthy individuals.2. GSH was 3.5 +/- 1.8-mu-M/g Hb for the young group, a value significantly greater (P < 0.01) than 2.3 +/- 0.9-mu-M/g Hb found for the aged group. Similarly, GSH-red activity, 5.5 +/- 1.8 IU/g Hb, was higher (P < 0.05) for the young group than 3.4 +/- 0.9 IU/g Hb found for the aged group. The GSH-px activity levels for the young group, 21.1 +/- 5.9 IU/g Hb, were significantly greater (P < 0.01) than 12.0 +/- 3.3 IU/g Hb for the aged group. The lower activity detected in the aged group for all of these parameters of the glutathione redox system was not related to low levels of hematocrit or hemoglobin.3. There was no statistical difference in the activation coefficient (AC) of reductase (+FAD/-FAD) between groups, which seems to indicate that the lower activity of glutathione reductase observed in the aged group was not due to riboflavin deficiency.4. Additional information is required to determine the mechanisms controlling the glutathione redox system and its role in the aging process.
Resumo:
The secondary alcohol dehydrogenase from the thermophile Thermoanaerobacter ethanolicus 39E has been crystallized at 40 degrees C by vapour difussion using polyethelene glycol as a precipitant. The orthorhombic crystals belong to the space group P 2(1)2(1)2 with cell constants of a=170.0 Angstrom, b=125.7 Angstrom and c=80.5 Angstrom. A native X-ray diffraction data set has been collected to 2.7 Angstrom resolution.