978 resultados para RADIATION DOSES
Resumo:
As complex radiotherapy techniques become more readily-practiced, comprehensive 3D dosimetry is a growing necessity for advanced quality assurance. However, clinical implementation has been impeded by a wide variety of factors, including the expense of dedicated optical dosimeter readout tools, high operational costs, and the overall difficulty of use. To address these issues, a novel dry-tank optical CT scanner was designed for PRESAGE 3D dosimeter readout, relying on 3D printed components and omitting costly parts from preceding optical scanners. This work details the design, prototyping, and basic commissioning of the Duke Integrated-lens Optical Scanner (DIOS).
The convex scanning geometry was designed in ScanSim, an in-house Monte Carlo optical ray-tracing simulation. ScanSim parameters were used to build a 3D rendering of a convex ‘solid tank’ for optical-CT, which is capable of collimating a point light source into telecentric geometry without significant quantities of refractive-index matched fluid. The model was 3D printed, processed, and converted into a negative mold via rubber casting to produce a transparent polyurethane scanning tank. The DIOS was assembled with the solid tank, a 3W red LED light source, a computer-controlled rotation stage, and a 12-bit CCD camera. Initial optical phantom studies show negligible spatial inaccuracies in 2D projection images and 3D tomographic reconstructions. A PRESAGE 3D dose measurement for a 4-field box treatment plan from Eclipse shows 95% of voxels passing gamma analysis at 3%/3mm criteria. Gamma analysis between tomographic images of the same dosimeter in the DIOS and DLOS systems show 93.1% agreement at 5%/1mm criteria. From this initial study, the DIOS has demonstrated promise as an economically-viable optical-CT scanner. However, further improvements will be necessary to fully develop this system into an accurate and reliable tool for advanced QA.
Pre-clinical animal studies are used as a conventional means of translational research, as a midpoint between in-vitro cell studies and clinical implementation. However, modern small animal radiotherapy platforms are primitive in comparison with conventional linear accelerators. This work also investigates a series of 3D printed tools to expand the treatment capabilities of the X-RAD 225Cx orthovoltage irradiator, and applies them to a feasibility study of hippocampal avoidance in rodent whole-brain radiotherapy.
As an alternative material to lead, a novel 3D-printable tungsten-composite ABS plastic, GMASS, was tested to create precisely-shaped blocks. Film studies show virtually all primary radiation at 225 kVp can be attenuated by GMASS blocks of 0.5cm thickness. A state-of-the-art software, BlockGen, was used to create custom hippocampus-shaped blocks from medical image data, for any possible axial treatment field arrangement. A custom 3D printed bite block was developed to immobilize and position a supine rat for optimal hippocampal conformity. An immobilized rat CT with digitally-inserted blocks was imported into the SmART-Plan Monte-Carlo simulation software to determine the optimal beam arrangement. Protocols with 4 and 7 equally-spaced fields were considered as viable treatment options, featuring improved hippocampal conformity and whole-brain coverage when compared to prior lateral-opposed protocols. Custom rodent-morphic PRESAGE dosimeters were developed to accurately reflect these treatment scenarios, and a 3D dosimetry study was performed to confirm the SmART-Plan simulations. Measured doses indicate significant hippocampal sparing and moderate whole-brain coverage.
Resumo:
Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian® by ViewRay®). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE® with optical-CT readout.
Methods: A detailed study of PRESAGE® dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) by optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr.
Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%.
Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by optical-CT within a week of treatment. The protocol requires small corrections for temporal and spatially-dependent behaviors observed between irradiation and readout.
Resumo:
This study has as general aim to propose a spatial map of doses as an auxiliary tool in assessing the need for optimization of the workplace in nuclear medicine services. As specific aims, we assessed the workers individual dosimetry; we analyzed the facilities of the nuclear medicine services; and we evaluated environment exposure rates. The research is characterized as a case study, with an exploratory and explanatory nature. It was conducted in three Nuclear Medicine Services, all established in the Northwest of the Paraná State. Results indicated that the evaluated dose rates and workers dosimetry, in all the dependencies of the surveyed services, are within the limits of annual doses. However some exceeded the limits recommended in the standard CNEN-NN 3:01 (2014). It was concluded that the spatial map dose is an important tool for nuclear medicine services because it facilitates the visualization of areas with highest concentration of radiation, and also helps in the constant review of these measures and resources, aiding in the identification of any failures and shortcomings, providing resources to correct any issues and prevent their repetition. The spatial map dose is also important for the regular inspection, evaluating if the radiation protection objectives are being met.
Resumo:
Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.
Resumo:
Cork boiling water is an aqueous and complex dark liquor with high concentration of phenolic compounds such as phenolic acids and tannins [1, 2], which are considered biorecalcitrants [2]. Ionizing radiation has been widely studied as an alternative technology for the degradation of organic contaminants without the addition of any other (e.g.: Fenton technologies). The aim of this work was to identify the compounds present in cork boiling water and further evaluate the resulting stable degradation products after gamma irradiation. The irradiation experiments of standard solutions were carried out at room temperature using a Co-60 experimental equipment. The applied absorbed doses were 20 and 50 kGy at a dose rate of 1.5 kGy/h, determined by routine dosimeters [3]. The identification of radiolytic products was carried out by HPLC-DAD-ESI/MS. The phenolic compounds were identified by comparing their retention times and UV–vis and mass spectra with those obtained from standard compounds, when available, as well as by comparing the obtained information with available data reported in the literature. Concerning the obtained results and the literature review, the main cork wastewater components are: quinic, gallic, protocatechuic, vanillic, syringic and ellagic acids. Based on this, we used protocatechuic, vanillic and syringic acids as model compounds to study their degradation by gamma radiation in order to identify the corresponding radiolytic products. Standard aqueous solutions were irradiated and the derivatives of each model compound are represented in figure 1. The obtained results seem to demonstrate that the derivatives of the parent compounds could also be phenolic acids, since it was observed the loss of 44 u (CO2) from the [M-H]- ions. Gallic and protocatechuic acids are identified as derivatives of vanillic and syringic acids, and gallic acid as a protocatechuic acid derivative. Compound 5 ([M-H]- at m/z 169) was tentatively identified as 2,4,6-trihydroxybenzoic acid, since its fragmentation pattern (m/z 151, 125 and 107) is similar to that previously reported in literature [4]. The structure of compound 7 was proposed based on the molecular ion and its fragmentation and compound 6 remains unknown.
Resumo:
Boletus edulis Bull: Fr. is an edible mushroom quite appreciated for its organoleptic and nutritional properties. However, the seasonality and perishability cause some difficulties in its distribution and marketing in fresh form; losses associated with this type of food during marketing can reach 40% [1]. Irradiation is recognized as a safe and effective method for food preservation, being used worldwide to increase shelf life of fresh and dehydrated products (e.g. fruits, vegetables and spices) [2]. In particular, gamma irradiation has already been applied to cultivated mushrooms (especially Agaricus, Lentinula and Pleurotus Genus) and proved to be an interesting conservation technology [3]. However, the studies with added-value wild species are scarce. In this work, the effects of gamma irradiation on chemical and antioxidant properties of wild B. edulis, were evaluated. Fruiting bodies were obtained in Trás-os-Montes, in the Northeast of Portugal, in November 2012. The irradiation was performed in experimental equipment with 60Co sources at 1 and 2 kGy. All the results were compared with nonirradiated samples (control). Macronutrients and energy value were determined following official procedures of food analysis; fatty acids were analyzed by gas-chromatography coupled to flame ionization detection (GC-FID), while sugars and tocopherols were determined by high performance liquid chromatography (HPLC) coupled to refraction index (RI) and fluorescence detectors, respectively. Antioxidant activity was evaluated in the methanolic extracts by in vitro assays measuring DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, reducing power, inhibition of β- carotene bleaching and inhibition of lipid peroxidation using thiobarbituric acid reactive substances (TBARS) assay. Total phenolics were also determined by the Folin-Ciocalteu assay. The nutritional profiles were not affected in high extension. Fatty acids and sugars were slightly affected, decreasing with the increasing doses. The performed assays for antioxidant activity, indicate that irradiated samples tended to have lower scavenging activity and reducing power, but higher lipid peroxidation inhibition. Despite the detected differences in individual compounds, the results of nutritional parameters, the most relevant in terms of mushroom acceptability by consumers, were less affected, indicating an interesting potential of gamma-irradiation to be used as an effective conservation technology for the studied mushrooms.
Resumo:
PARP inhibitors can be used to induce synthetic lethality in cells with bi-allelic BRCA1 and BRCA2 mutations. However the effect of PARP inhibitors in combination with radiation on cells with mono-allelic mutations of BRCA1 and BRCA2 is unknown. We have examined the cell survival response of lymphoblastoid cells derived from normal individuals and those derived from carriers of BRCA1 and BRCA2 mutations, following exposure to ionising radiation and the PARP inhibitor Olaparib. Two lymphoblastoid cell lines from normal individuals and three with mono-allelic mutations in BRCA1 and BRCA2 were exposed to increasing doses of gamma radiation either alone or in combination with 5 μM Olaparib. Cell survival was measured using the MTT assay. Exposure to increasing doses of gamma radiation caused a reduction in cell survival of all cell types. The combined exposure to gamma radiation and 5 μM Olaparib did not enhance cell kill in normal or BRCA2 heterozygote lymphoblastoid cells but significantly enhanced cell kill in cells derived from BRCA1 carriers (P = 0.02). The treatment of cancer patients carrying mutations in the BRCA1 gene with radiotherapy and the PARP inhibitor Olaparib may significantly enhance radiation induced normal tissue toxicity in these patients.
Resumo:
The finite element and boundary element methods are employed in this study to investigate the sound radiation characteristics of a box-type structure. It has been shown [T.R. Lin, J. Pan, Vibration characteristics of a box-type structure, Journal of Vibration and Acoustics, Transactions of ASME 131 (2009) 031004-1–031004-9] that modes of natural vibration of a box-type structure can be classified into six groups according to the symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate that such properties also reveal information about sound radiation effectiveness of each group of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for typical modes from each group. Similar characteristics of modal radiation efficiencies between a box structure and a corresponding simply supported panel are observed. The change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It is found that the sound radiation directivity of each box mode can be correlated to that of elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical frequency of the plates of the box. The sound radiation pattern on the box surface also closely related to the vibration amplitude distribution of the box structure at frequencies above the critical frequency. In the medium frequency range, the radiated sound field is dominated by the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a peak at frequencies above the critical frequency, and gradually approaches unity at higher frequencies.