957 resultados para Quasi contracts
Resumo:
The Private Finance Initiative (PFI) is frequently portrayed as a vehicle for change for the UK construction sector. Significant change in the working practices of construction companies is predicted as new business models based on whole-life value creation emerge. This paper shifts the focus of discussion from projected ideals and possible developments to the current situation. More specifically, it focuses on the challenges that large firms participating in both PFI and traditional markets face. The analysis focuses on the relations between business units and on day-to-day challenges to greater long-term commitment, through life-service provision and increased integration between construction and service provision. The paper offers insights into the effects of PFI on construction practice and their implications for theorizing on organizational and strategic change. It suggests abandoning a simplistic model of the centralized, homogenous firm and instead capturing the dynamics of decentralized, large firms working in multiple markets on a variety of projects. This would assist in the provision of more realistic and fruitful models of how to realize the PFI vision.
Resumo:
The aim of this chapter is to examine what the construction sector brings to our understanding of the procurement of complex performance. The chapter is divided into the following parts: fi rst, an overview of the various matters that contribute to the complexity of construction procurement is provided. Second, the most important contractual incentive schemes found in construction contracts are discussed, and this is followed by, third, an examination of the changes associated with the shift towards procuring complex performance (PCP) (service provision). Fourth, the main findings of the authors’ recent research on PCP contracts are summarised, followed by the conclusion. It should be noted that the procurement of services is referred to as ‘PCP’ in this chapter.
Resumo:
The precision of quasioptical null-balanced bridge instruments for transmission and reflection coefficient measurements at millimeter and submillimeter wavelengths is analyzed. A Jones matrix analysis is used to describe the amount of power reaching the detector as a function of grid angle orientation, sample transmittance/reflectance and phase delay. An analysis is performed of the errors involved in determining the complex transmission and reflection coefficient after taking into account the quantization error in the grid angle and micrometer readings, the transmission or reflection coefficient of the sample, the noise equivalent power of the detector, the source power and the post-detection bandwidth. For a system fitted with a rotating grid with resolution of 0.017 rad and a micrometer quantization error of 1 μm, a 1 mW source, and a detector with a noise equivalent power 5×10−9 W Hz−1/2, the maximum errors at an amplitude transmission or reflection coefficient of 0.5 are below ±0.025.
Resumo:
The authors describe the design of a fuzzy logic controller for the control of a planar two-link manipulator. The plant is quasi-decoupled with respect to gravity. Complete decoupling is not achieved due to the nonoptimal nature of the expert rules. The performance of the fuzzy controller is compared to that of the critically damped computed torque controller. Results are presented complete with robustness tests.
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
Currently, most operational forecasting models use latitude-longitude grids, whose convergence of meridians towards the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al, JCP, 2009 and Ringler et al, JCP, 2010 have developed a method for arbitrarily-structured, orthogonal C-grids (TRiSK), which has many of the desirable properties of the C-grid on latitude-longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations. We demonstrate some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a Voronoi-ised cubed sphere, a Voronoi-ised skipped latitude-longitude grid and a grid of kites in comparison to a full latitude-longitude grid. We will show that the hexagonal-icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron since they consist of vorticity oscillations on the dual grid which can be controlled using a diffusive advection scheme for potential vorticity.
Resumo:
A series of experiments are described that examine the sensitivity of the northern-hemisphere winter evolution to the equatorial quasi-biennial oscillation (QBO). The prime tool for the experiments is a stratosphere-mesosphere model. The model is integrated over many years with the modelled equatorial winds relaxed towards observed values in order to simulate a realistic QBO. In experiment A the equatorial winds are relaxed towards Singapore radiosonde observations in the height region 16-32 km. In contrast to previous modelling studies, the Holton-Tan relationship (warm/cold winters associated with easterly/westerly QBO winds in the lower stratosphere) is absent. However, in a second experiment (run B) in which the equatorial winds are relaxed towards rocketsonde data over the extended height range 16-58 km, a realistic Holton-Tan relationship is reproduced. A series of further studies are described that explore in more detail the sensitivity to various equatorial height regions and to the bottom-boundary forcing. The experiments suggest that the evolution of the northern-hemisphere winter circulation is sensitive to equatorial winds throughout the whole depth of the stratosphere and not just to the lower-stratospheric wind direction as previously assumed.
Resumo:
This article extends the theory of entrepreneurial opportunity exploitation, outlining how under certain conditions, opportunity exploitation is dependent on market making innovations. Where adverse selection and moral hazard characterize markets, consumers are likely to withdraw regardless of product quality. In order to overcome consumer resistance, entrepreneurs must signal credible commitments. But because consumers purchase without fully specifying requirements, entrepreneurs' commitments take the partial form of implicit contracts, creating strong mutual commitments to repeated transactions. These commitments enable novel markets to function, but introduce additional costs. This article illustrates the theory with the historic case of Singer in sewing machines