994 resultados para Quantum-mechanics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formalism of supersymmetric quantum mechanics provides us with the eigenfunctions to be used in the variational method to obtain the eigenvalues for the Hulthen potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schodinger equation for a bidimensional potential. This potential can be applied in several systens in physical and chemistry context, for instance, it can be used to study benzene molecule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Schrodinger equation with the truncated Coulomb potential is solved using the supersymmetric quantum mechanics formalism, with and without the cutoff in the angular momentum potential. We obtain some analytical eigenfunctions and eigenvalues for particular values of the cutoff parameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formalism of supersymmetric quantum mechanics is used to determine trial functions in order to obtain eigenvalues for the Lennard-Jones (12, 6) potential from variational method. The superpotential obtained provides an effective potential which can be directly comparable to the original one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determine the solutions of the Schrödinger equation for an asymptotically linear potential. Analytical solutions are obtained by superalgebra in quantum mechanics and we establish when these solutions are possible. Numerical solutions for the spectra are obtained by the shifted 1/N expansion method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A harmonic oscillator isospectral potential obtained by supersymmetric algebra applied to quantum mechanics is suggested to simulate DNA H bonds. Thermic denaturation is studied with this potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that an extra constant of motion with an analytic form can exist in the neighborhood of some discrete circular orbits of helium when one includes retardation and self-interaction effects. The energies of these discrete stable circular orbits are in the correct atomic magnitude. The highest frequency in the stable manifold of one such orbit agrees with the highest frequency sharp line of parahelium to within 2%. The generic term of the frequency in the stable manifold to higher orbits is also in agreement with the asymptotic form of quantum mechanics for helium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend the use of Bell inequalities to Φ → K0K̄0 decays by exploiting analogies and differences to the well-known and experimentally verified singlet-spin case. Contrasting with other analyses, our Bell inequalities are violated by quantum mechanics and can strictly be derived from local realistic theories. In principle, quantum mechanics could then be tested using unstable, oscillating states governed by a CP-violating Hamiltonian. © 1999 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Variational Method is applied within the context of Supersymmetric Quantum Mechanics to provide information about the energy and eigenfunction of the lowest levels of a Hamiltonian. The approach is illustrated by the case of the Morse potential applied to several diatomic molecules and the results are compared with stabilished results. (C) 2000 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high parton density effects are strongly dependent of the spatial gluon distribution within the proton, with radius R, which cannot be derived from perturbative QCD. In this paper we assume that the unitarity corrections are present in the HERA kinematical region and constrain the value of R using the data for the proton structure function and its slope. We obtain that the gluons are not distributed uniformly in the whole proton disc, but behave as concentrated in smaller regions. (C) 2000 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED 3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the relationship between exact solvability of the Schroedinger equation, due to a spatially dependent mass, and the ordering ambiguity. Some examples show that, even in this case, one can find exact solutions. Furthermore, it is demonstrated that operators with linear dependence on the momentum are nonambiguous. (C) 2000 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First-principles quantum-mechanical techniques, based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models for Ba0.5Sr 0.5TiO3. Electronic properties are analyzed and the relevance of the present theoretical and experimental results on the photoluminescence behavior is discussed. The presence of localized electronic levels in the band gap, due to the symmetry break, would be responsible for the visible photoluminescence of the amorphous state at room temperature. Thin films were synthesized following a soft chemical processing. Their structure was confirmed by x-ray data and the corresponding photoluminescence properties measured.