949 resultados para Quadrotor. Variable reference control. Position and orientation control. UAV s


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shadows and illumination play an important role when generating a realistic scene in computer graphics. Most of the Augmented Reality (AR) systems track markers placed in a real scene and retrieve their position and orientation to serve as a frame of reference for added computer generated content, thereby producing an augmented scene. Realistic depiction of augmented content with coherent visual cues is a desired goal in many AR applications. However, rendering an augmented scene with realistic illumination is a complex task. Many existent approaches rely on a non automated pre-processing phase to retrieve illumination parameters from the scene. Other techniques rely on specific markers that contain light probes to perform environment lighting estimation. This study aims at designing a method to create AR applications with coherent illumination and shadows, using a textured cuboid marker, that does not require a training phase to provide lighting information. Such marker may be easily found in common environments: most of product packaging satisfies such characteristics. Thus, we propose a way to estimate a directional light configuration using multiple texture tracking to render AR scenes in a realistic fashion. We also propose a novel feature descriptor that is used to perform multiple texture tracking. Our descriptor is an extension of the binary descriptor, named discrete descriptor, and outperforms current state-of-the-art methods in speed, while maintaining their accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was supported by a Knowledge Transfer Network BBSRC Industrial Case (#414 BB/L502467/1) studentship in association Zoetis Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. Results: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 Angstrom. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. Conclusions: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os métodos clínicos que são realizados com recurso a tecnologias de imagiologia têm registado um aumento de popularidade nas últimas duas décadas. Os procedimentos tradicionais usados em cirurgia têm sido substituídos por métodos minimamente invasivos de forma a conseguir diminuir os custos associados e aperfeiçoar factores relacionados com a produtividade. Procedimentos clínicos modernos como a broncoscopia e a cardiologia são caracterizados por se focarem na minimização de acções invasivas, com os arcos em ‘C’ a adoptarem um papel relevante nesta área. Apesar de o arco em ‘C’ ser uma tecnologia amplamente utilizada no auxílio da navegação em intervenções minimamente invasivas, este falha na qualidade da informação fornecida ao cirurgião. A informação obtida em duas dimensões não é suficiente para proporcionar uma compreensão total da localização tridimensional da região de interesse, revelando-se como uma tarefa essencial o estabelecimento de um método que permita a aquisição de informação tridimensional. O primeiro passo para alcançar este objectivo foi dado ao definir um método que permite a estimativa da posição e orientação de um objecto em relação ao arco em ‘C’. De forma a realizar os testes com o arco em ‘C’, a geometria deste teve que ser inicialmente definida e a calibração do sistema feita. O trabalho desenvolvido e apresentado nesta tese foca-se num método que provou ser suficientemente sustentável e eficiente para se estabelecer como um ponto de partida no caminho para alcançar o objectivo principal: o desenvolvimento de uma técnica que permita o aperfeiçoamento da qualidade da informação adquirida com o arco em ‘C’ durante uma intervenção clínica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

13th International Conference on Autonomous Robot Systems (Robotica), 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for segmenting white matter tracts from high angular resolution diffusion MR. images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orientation space. The segmentation is done using a 5D level set method applied to hyper-surfaces evolving in 5D position-orientation space. In this paper we present a methodology for constructing the position-orientation space. We then show how to implement the standard level set method in such a non-Euclidean high dimensional space. The level set theory is basically defined for N-dimensions but there are several practical implementation details to consider, such as mean curvature. Finally, we will show results from a synthetic model and a few preliminary results on real data of a human brain acquired by high angular resolution diffusion MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of depth sensors has made it possible to track – not only monocular cues – but also the actual depth values of the environment. This is especially useful in augmented reality solutions, where the position and orientation (pose) of the observer need to be accurately determined. This allows virtual objects to be installed to the view of the user through, for example, a screen of a tablet or augmented reality glasses (e.g. Google glass, etc.). Although the early 3D sensors have been physically quite large, the size of these sensors is decreasing, and possibly – eventually – a 3D sensor could be embedded – for example – to augmented reality glasses. The wider subject area considered in this review is 3D SLAM methods, which take advantage of the 3D information available by modern RGB-D sensors, such as Microsoft Kinect. Thus the review for SLAM (Simultaneous Localization and Mapping) and 3D tracking in augmented reality is a timely subject. We also try to find out the limitations and possibilities of different tracking methods, and how they should be improved, in order to allow efficient integration of the methods to the augmented reality solutions of the future.