601 resultados para Pyruvate-ferredoxin Oxidoreductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT: Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by (a) the metabolites of the fetal-placental unit at birth, (b) the fetal adrenal androgens until its involution 3-6 months postnatally, and (c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE: The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS: We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS: 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION: The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylglyoxal is a very reactive α-oxoaldehyde putatively produced by glycolysis, cytochrome P450-catalyzed acetone oxidation and aminoacetone oxidation. Methylglyoxal has been pointed as a substrate for the glyoxalase system ultimately energy-yielding pyruvate, but methylglyoxal is also a toxicant involved in protein aggregation and DNA modification. Controversial hypothesis on methylglyoxal as an anticancer agent, an energy-yielding glycolysis intermediates, and as a regulator of cell division have also been proposed. Methylglyoxal research focuses now on unveiling its biological properties and on the discovery of drugs capable to inhibit its toxic effects, principally in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exopolysaccharides with characteristics of gel produced by Rhizobium tropici (EPS RT) and Mesorhizobium sp (EPS MR) are acidic heteropolysaccharide composed mainly of glucose and galactose in a molar ratio of 4:1 and 5:1 respectively, with traces of mannose (~ 1%). Chemical analysis showed the presence of uronic acid, pyruvate and acetyl-substituents in the structures of both polymers. Experiments of gel permeation chromatography and polyacrylamide gel electrophoresis showed that EPS RT and EPS MR are homogeneous molecules with low grade of polydispersity. The EPS were characterized using spectroscopic techniques of FT-IR, ¹H and 13C-NMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UDP-N-acetylglucosamine-enolpyruvyl transferase (MurA) catalyzes the reaction between phosphoenol pyruvate and UDP-N-acetylglucosamine. We present a theoretical approach using the semiempirical PM6 method for defining protonation state of three active site residues, K22, H125, and K160. Prior comparison with neutron diffraction data showed that PM6 accurately predicted protonation states of active site residues of b-trypsin and D-xylose isomerase. Using the same methodology with MurA crystallographic data, we conclude that when reaction intermediate is located at the active site, H125 and K22 are in protonated form and K160 in neutral form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid state M-L compounds, were M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, and thermal decomposition of the isolated compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.