987 resultados para Pulse Transit Time
Resumo:
In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00 m/a ± 0.01 m/a. Along the flowline of Vostok Station an extension rate of about 10**-5/a (equivalent to 1 cm/km/a) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm/a along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.
Resumo:
Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Sites 994, 995, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m**3 of gas.
Resumo:
We use a 27 year long time series of repeated transient tracer observations to investigate the evolution of the ventilation time scales and the related content of anthropogenic carbon (Cant) in deep and bottom water in the Weddell Sea. This time series consists of chlorofluorocarbon (CFC) observations from 1984 to 2008 together with first combined CFC and sulphur hexafluoride (SF6) measurements from 2010/2011 along the Prime Meridian in the Antarctic Ocean and across the Weddell Sea. Applying the Transit Time Distribution (TTD) method we find that all deep water masses in the Weddell Sea have been continually growing older and getting less ventilated during the last 27 years. The decline of the ventilation rate of Weddell Sea Bottom Water (WSBW) and Weddell Sea Deep Water (WSDW) along the Prime Meridian is in the order of 15-21%; the Warm Deep Water (WDW) ventilation rate declined much faster by 33%. About 88-94% of the age increase in WSBW near its source regions (1.8-2.4 years per year) is explained by the age increase of WDW (4.5 years per year). As a consequence of the aging, the Cant increase in the deep and bottom water formed in the Weddell Sea slowed down by 14-21% over the period of observations.