975 resultados para Pseudo phase plane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this sheep study, we investigated the influence of fixation stability on the temporal and spatial distribution of tissues in the fracture callus. As the initial mechanical conditions have been cited as being especially important for the healing outcome, it was hypothesized that differences in the path of healing would be seen as early as the initial phase of healing. ----- ----- Sixty-four sheep underwent a mid-shaft tibial osteotomy that was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture calluses were analyzed using radiological, biomechanical and histological techniques. Statistical comparison between the groups was performed using the Mann–Whitney U test for unpaired non-parametric data. ----- ----- In the callus of the tibia treated with semi-rigid fixation, remnants of the fracture haematoma remained present for longer, although new periosteal bone formation during early healing was similar in both groups. The mechanical competence of the healing callus at 6 weeks was inferior compared to tibiae treated with rigid fixation. Semi-rigid fixation resulted in a larger cartilage component of the callus, which persisted longer. Remodeling processes were initiated earlier in the rigid group, while new bone formation continued throughout the entire investigated period in the semi-rigid group. ----- ----- In this study, evidence is provided that less rigid fixation increased the time required for healing. The process of intramembranous ossification appeared during the initial stages of healing to be independent of mechanical stability. However, the delay in healing was related to a prolonged chondral phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bone healing is sensitive to the initial mechanical conditions with tissue differentiation being determined within days of trauma. Whilst axial compression is regarded as stimulatory, the role of interfragmentary shear is controversial. The purpose of this study was to determine how the initial mechanical conditions produced by interfragmentary shear and torsion differ from those produced by axial compressive movements. ----- ----- Methods: The finite element method was used to estimate the strain, pressure and fluid flow in the early callus tissue produced by the different modes of interfragmentary movement found in vivo. Additionally, tissue formation was predicted according to three principally different mechanobiological theories. ----- ----- Findings: Large interfragmentary shear movements produced comparable strains and less fluid flow and pressure than moderate axial interfragmentary movements. Additionally, combined axial and shear movements did not result in overall increases in the strains and the strain magnitudes were similar to those produced by axial movements alone. Only when axial movements where applied did the non-distortional component of the pressure–deformation theory influence the initial tissue predictions. ----- ----- Interpretation: This study found that the mechanical stimuli generated by interfragmentary shear and torsion differed from those produced by axial interfragmentary movements. The initial tissue formation as predicted by the mechanobiological theories was dominated by the deformation stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Competitive markets are increasingly driving new initiatives for shorter cycle times resulting in increased overlapping of project phases. This, in turn, necessitates improving the interfaces between the different phases to be overlapped (integrated), thus allowing transfer of processes, information and knowledge from one individual or team to another. This transfer between phases, within and between projects, is one of the basic challenges to the philosophy of project management. To make the process transfer more transparent with minimal loss of momentum and project knowledge, this paper draws upon Total Quality Management (TQM) and Business Process Re-engineering (BPR) philosophies to develop a Best Practice Model for managing project phase integration. The paper presents the rationale behind the model development and outlines its two key parts; (1) Strategic Framework and (2) Implementation Plan. Key components of both the Strategic Framework and the Implementation Plan are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We treat two related moving boundary problems. The first is the ill-posed Stefan problem for melting a superheated solid in one Cartesian coordinate. Mathematically, this is the same problem as that for freezing a supercooled liquid, with applications to crystal growth. By applying a front-fixing technique with finite differences, we reproduce existing numerical results in the literature, concentrating on solutions that break down in finite time. This sort of finite-time blow-up is characterised by the speed of the moving boundary becoming unbounded in the blow-up limit. The second problem, which is an extension of the first, is proposed to simulate aspects of a particular two-phase Stefan problem with surface tension. We study this novel moving boundary problem numerically, and provide results that support the hypothesis that it exhibits a similar type of finite-time blow-up as the more complicated two-phase problem. The results are unusual in the sense that it appears the addition of surface tension transforms a well-posed problem into an ill-posed one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectrum of bukovskýite, Fe3+2(OH)(SO4)(AsO4)•7H2O has been studied and compared with the Raman spectrum of an amorphous gel containing specifically Fe, As and S elements and is understood as an intermediate product in the formation of bukovskýite. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations and librational modes of hydrogen bonded water molecules, stretching and bending vibrations of hydrogen bonded (OH)- ions and Fe3+-(O,OH) units. Approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, observed bands are sharp, the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of  H2O bending vibration in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared with those in bukovskýite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, laminar natural convection flow from a permeable and isothermal vertical surface placed in non-isothermal surroundings is considered. Introducing appropriate transformations into the boundary layer equations governing the flow derives non-similar boundary layer equations. Results of both the analytical and numerical solutions are then presented in the form of skin-friction and Nusselt number. Numerical solutions of the transformed non-similar boundary layer equations are obtained by three distinct solution methods, (i) the perturbation solutions for small � (ii) the asymptotic solution for large � (iii) the implicit finite difference method for all � where � is the transpiration parameter. Perturbation solutions for small and large values of � are compared with the finite difference solutions for different values of pertinent parameters, namely, the Prandtl number Pr, and the ambient temperature gradient n.