956 resultados para Proteomic analysis
Resumo:
A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.
Resumo:
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in North American males and the most common newly diagnosed cancer in men world wide. Biomarkers are widely used for both early detection and prognostic tests for cancer. The current, commonly used biomarker for CaP is serum prostate specific antigen (PSA). However, the specificity of this biomarker is low as its serum level is not only increased in CaP but also in various other diseases, with age and even body mass index. Human body fluids provide an excellent resource for the discovery of biomarkers, with the advantage over tissue/biopsy samples of their ease of access, due to the less invasive nature of collection. However, their analysis presents challenges in terms of variability and validation. Blood and urine are two human body fluids commonly used for CaP research, but their proteomic analyses are limited both by the large dynamic range of protein abundance making detection of low abundance proteins difficult and in the case of urine, by the high salt concentration. To overcome these challenges, different techniques for removal of high abundance proteins and enrichment of low abundance proteins are used. Their applications and limitations are discussed in this review. A number of innovative proteomic techniques have improved detection of biomarkers. They include two dimensional differential gel electrophoresis (2D-DIGE), quantitative mass spectrometry (MS) and functional proteomic studies, i.e., investigating the association of post translational modifications (PTMs) such as phosphorylation, glycosylation and protein degradation. The recent development of quantitative MS techniques such as stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantitation (iTRAQ) and multiple reaction monitoring (MRM) have allowed proteomic researchers to quantitatively compare data from different samples. 2D-DIGE has greatly improved the statistical power of classical 2D gel analysis by introducing an internal control. This chapter aims to review novel CaP biomarkers as well as to discuss current trends in biomarker research from two angles: the source of biomarkers (particularly human body fluids such as blood and urine), and emerging proteomic approaches for biomarker research.
Resumo:
Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.
Resumo:
Metarhizium anisopliae is a well-characterized biocontrol agent of a wide range of insects including cane grubs. In this study, a two-dimensional (2D) electrophoresis was used to display secreted proteins of M. anisopliae strain FI-1045 growing on the whole greyback cane grubs and their isolated cuticles. Hydrolytic enzymes secreted by M. anisopliae play a key role in insect cuticle-degradation and initiation of the infection process. We have identified all the 101 protein spots displayed by cross-species identification (CSI) from the fungal kingdom. Among the identified proteins were 64-kDa serine carboxypeptidase, 1,3 beta-exoglucanase, Dynamin GTPase, THZ kinase, calcineurin like phosphoesterase, and phosphatidylinositol kinase secreted by M. ansiopliae (FI-1045) in response to exposure to the greyback cane grubs and their isolated cuticles. These proteins have not been previously identified from the culture supernatant of M. anisopliae during infection. To our knowledge, this the first proteomic map established to study the extracellular proteins secreted by M. ansiopliae (FI-1045) during infection of greyback cane grubs and its cuticles.
Resumo:
Metarhizium anisopliae is a naturally occurring cosmopolitan fungus infecting greyback canegrubs (Dermolepida albohirtum). The main molecular factors involved in the complex interactions occurring between the greyback canegrubs and M. anisopliae (FI-1045) were investigated by comparing the proteomes of healthy canegrubs, canegrubs infected with Metarhizium and fungus only. Differentially expressed proteins from the infected canegrubs were subjected to mass spectrometry to search for pathogenicity related proteins. Immune-related proteins of canegrubs identified in this study include cytoskeletal proteins (actin), cell communication proteins, proteases and peptidases. Fungal proteins identified include metalloproteins, acyl-CoA, cyclin proteins and chorismate mutase. Comparative proteome analysis provided a view into the cellular reactions triggered in the canegrub in response to the fungal infection at the onset of biological control.
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ankylosing Spondylitis (AS) is a common inflammatory rheumatic disease with a predilection for the axial skeleton, affecting 0.2% of the population. Current diagnostic criteria rely on a composite of clinical and radiological changes, with a mean time to diagnosis of 5 to 10 years. In this study we employed nano liquid-chromatography mass spectrometry analysis to detect and quantify proteins and small compounds including endogenous peptides and metabolites in serum from 18 AS patients and nine healthy individuals. We identified a total of 316 proteins in serum, of which 22 showed significant up- or down-regulation (p < 0.05) in AS patients. Receiver operating characteristic analysis of combined levels of serum amyloid P component and inter-α-trypsin inhibitor heavy chain 1 revealed high diagnostic value for Ankylosing Spondylitis (area under the curve = 0.98). We also depleted individual sera of proteins to analyze endogenous peptides and metabolic compounds. We detected more than 7000 molecular features in patients and healthy individuals. Quantitative MS analysis revealed compound profiles that correlate with the clinical assessment of disease activity. One molecular feature identified as a Vitamin D3 metabolite-(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone-was down-regulated in AS. The ratio of this vitamin D metabolite versus vitamin D binding protein serum levels was also altered in AS as compared with controls. These changes may contribute to pathological skeletal changes in AS. Our study is the first example of an integration of proteomic and metabolomic techniques to find new biomarker candidates for the diagnosis of Ankylosing Spondylitis
Resumo:
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome.
Resumo:
Hyperglycemia is widely recognized to be a potent stimulator of monocyte activity, which is a crucial event in the pathogenesis of atherosclerosis. We analyzed the monocyte proteome for potential markers that would enhance the ability to screen for early inflammatory status in Type 2 diabetes mellitus (T2DM), using proteomic technologies. Monocytic cells (THP-1) were primed with high glucose (HG), their protein profiles were analyzed using 2DE and the downregulated differentially expressed spots were identified using MALDI TOF/MS. We selected five proteins that were secretory in function with the help of bioinformatic programs. A predominantly downregulated protein identified as cyclophilin A (sequence coverage 98%) was further validated by immunoblotting experiments. The cellular mRNA levels of cyclophilin A in various HG-primed cells were studied using qRT-PCR assays and it was observed to decrease in a dose-dependent manner. LC-ESI-MS was used to identify this protein in the conditioned media of HG-primed cells and confirmed by Western blotting as well as ELISA. Cyclophilin A was also detected in the plasma of patients with diabetes. We conclude that cyclophilin A is secreted by monocytes in response to HG. Given the paracrine and autocrine actions of cyclophilin A, the secreted immunophilin could be significant for progression of atherosclerosis in type 2 diabetes. Our study also provides evidence that analysis of monocyte secretome is a viable strategy for identifying candidate plasma markers in diabetes.
Resumo:
Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. Biological significance: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock -in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock -in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene exptessions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh-Qm (Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Hypoxia, as one suboptimal environmental condition, can affect the physiological state of shrimp during pond aquaculture. To better understand the mechanism of response to hypoxic stress in Chinese shrimp Fenneropenaeus chinensis, proteome research approach was utilized. Differentially expressed proteins of hepatopancreas in adult Chinese shrimp between the control and hypoxia-stressed groups were screened. By 2-DE analysis, 67 spots showed obvious changes after hypoxia. Using LC-ESI-MS/MS, 51 spots representing 33 proteins were identified including preamylase, arginine kinase, phosphopyruvate hydratase, citrate synthase, ATP synthase alpha subunit, chymotrypsin BI, chitinase, ferritin, C-type lectin receptors, transketolase, formylglutathione hydrolase, formyltetrahydrofolate dehydrogenase, aldehyde dehydrogenase, glutathione peroxidase, cytosolic manganese superoxide dismutase, protein disulfide isomerase, beta-actin, oncoprotem nm23, crustacyanin-Cl and so on. These proteins could be functionally classified into several groups such as proteins related to energy production, metabolism-related proteins, immune-related proteins, antioxidant proteins, chaperones, cytoskeleton proteins and ungrouped proteins. The transcription levels of ten selected genes encode the identified proteins were analyzed by real-time PCR at different sampling times of hypoxia. This study is the first analysis of differentially expressed proteins in the hepatopancreas of shrimp after hypoxia and provides a new insight for further study in hypoxic stress response of shrimp at the protein level.