956 resultados para Production engineering Data processing
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.
Resumo:
The possibility to develop automatically running models which can capture some of the most important factors driving the urban climate would be very useful for many planning aspects. With the help of these modulated climate data, the creation of the typically used “Urban Climate Maps” (UCM) will be accelerated and facilitated. This work describes the development of a special ArcGIS software extension, along with two support databases to achieve this functionality. At the present time, lacking comparability between different UCMs and imprecise planning advices going along with the significant technical problems of manually creating conventional maps are central issues. Also inflexibility and static behaviour are reducing the maps’ practicality. From experi-ence, planning processes are formed more productively, namely to implant new planning parameters directly via the existing work surface to map the impact of the data change immediately, if pos-sible. In addition to the direct climate figures, information of other planning areas (like regional characteristics / developments etc.) have to be taken into account to create the UCM as well. Taking all these requirements into consideration, an automated calculation process of urban climate impact parameters will serve to increase the creation of homogenous UCMs efficiently.
Resumo:
Presentation at the 1997 Dagstuhl Seminar "Evaluation of Multimedia Information Retrieval", Norbert Fuhr, Keith van Rijsbergen, Alan F. Smeaton (eds.), Dagstuhl Seminar Report 175, 14.04. - 18.04.97 (9716). - Abstract: This presentation will introduce ESCHER, a database editor which supports visualization in non-standard applications in engineering, science, tourism and the entertainment industry. It was originally based on the extended nested relational data model and is currently extended to include object-relational properties like inheritance, object types, integrity constraints and methods. It serves as a research platform into areas such as multimedia and visual information systems, QBE-like queries, computer-supported concurrent work (CSCW) and novel storage techniques. In its role as a Visual Information System, a database editor must support browsing and navigation. ESCHER provides this access to data by means of so called fingers. They generalize the cursor paradigm in graphical and text editors. On the graphical display, a finger is reflected by a colored area which corresponds to the object a finger is currently pointing at. In a table more than one finger may point to objects, one of which is the active finger and is used for navigating through the table. The talk will mostly concentrate on giving examples for this type of navigation and will discuss some of the architectural needs for fast object traversal and display. ESCHER is available as public domain software from our ftp site in Kassel. The portable C source can be easily compiled for any machine running UNIX and OSF/Motif, in particular our working environments IBM RS/6000 and Intel-based LINUX systems. A porting to Tcl/Tk is under way.
Resumo:
This thesis aims at empowering software customers with a tool to build software tests them selves, based on a gradual refinement of natural language scenarios into executable visual test models. The process is divided in five steps: 1. First, a natural language parser is used to extract a graph of grammatical relations from the textual scenario descriptions. 2. The resulting graph is transformed into an informal story pattern by interpreting structurization rules based on Fujaba Story Diagrams. 3. While the informal story pattern can already be used by humans the diagram still lacks technical details, especially type information. To add them, a recommender based framework uses web sites and other resources to generate formalization rules. 4. As a preparation for the code generation the classes derived for formal story patterns are aligned across all story steps, substituting a class diagram. 5. Finally, a headless version of Fujaba is used to generate an executable JUnit test. The graph transformations used in the browser application are specified in a textual domain specific language and visualized as story pattern. Last but not least, only the heavyweight parsing (step 1) and code generation (step 5) are executed on the server side. All graph transformation steps (2, 3 and 4) are executed in the browser by an interpreter written in JavaScript/GWT. This result paves the way for online collaboration between global teams of software customers, IT business analysts and software developers.
Resumo:
Eine wesentliche Funktionalität bei der Verwendung semantischer Technologien besteht in dem als Reasoning bezeichneten Prozess des Ableitens von impliziten Fakten aus einer explizit gegebenen Wissensbasis. Der Vorgang des Reasonings stellt vor dem Hintergrund der stetig wachsenden Menge an (semantischen) Informationen zunehmend eine Herausforderung in Bezug auf die notwendigen Ressourcen sowie der Ausführungsgeschwindigkeit dar. Um diesen Herausforderungen zu begegnen, adressiert die vorliegende Arbeit das Reasoning durch eine massive Parallelisierung der zugrunde liegenden Algorithmen und der Einführung von Konzepten für eine ressourceneffiziente Ausführung. Diese Ziele werden unter Berücksichtigung der Verwendung eines regelbasierten Systems verfolgt, dass im Gegensatz zur Implementierung einer festen Semantik die Definition der anzuwendenden Ableitungsregeln während der Laufzeit erlaubt und so eine größere Flexibilität bei der Nutzung des Systems bietet. Ausgehend von einer Betrachtung der Grundlagen des Reasonings und den verwandten Arbeiten aus den Bereichen des parallelen sowie des regelbasierten Reasonings werden zunächst die Funktionsweise von Production Systems sowie die dazu bereits existierenden Ansätze für die Optimierung und im Speziellen der Parallelisierung betrachtet. Production Systems beschreiben die grundlegende Funktionalität der regelbasierten Verarbeitung und sind somit auch die Ausgangsbasis für den RETE-Algorithmus, der zur Erreichung der Zielsetzung der vorliegenden Arbeit parallelisiert und für die Ausführung auf Grafikprozessoren (GPUs) vorbereitet wird. Im Gegensatz zu bestehenden Ansätzen unterscheidet sich die Parallelisierung insbesondere durch die gewählte Granularität, die nicht durch die anzuwendenden Regeln, sondern von den Eingabedaten bestimmt wird und sich damit an der Zielarchitektur orientiert. Aufbauend auf dem Konzept der parallelen Ausführung des RETE-Algorithmus werden Methoden der Partitionierung und Verteilung der Arbeitslast eingeführt, die zusammen mit Konzepten der Datenkomprimierung sowie der Verteilung von Daten zwischen Haupt- und Festplattenspeicher ein Reasoning über Datensätze mit mehreren Milliarden Fakten auf einzelnen Rechnern erlauben. Eine Evaluation der eingeführten Konzepte durch eine prototypische Implementierung zeigt für die adressierten leichtgewichtigen Ontologiesprachen einerseits die Möglichkeit des Reasonings über eine Milliarde Fakten auf einem Laptop, was durch die Reduzierung des Speicherbedarfs um rund 90% ermöglicht wird. Andererseits kann der dabei erzielte Durchsatz mit aktuellen State of the Art Reasonern verglichen werden, die eine Vielzahl an Rechnern in einem Cluster verwenden.
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
At its most fundamental, cognition as displayed by biological agents (such as humans) may be said to consist of the manipulation and utilisation of memory. Recent discussions in the field of cognitive robotics have emphasised the role of embodiment and the necessity of a value or motivation for autonomous behaviour. This work proposes a computational architecture – the Memory-Based Cognitive (MBC) architecture – based upon these considerations for the autonomous development of control of a simple mobile robot. This novel architecture will permit the exploration of theoretical issues in cognitive robotics and animal cognition. Furthermore, the biological inspiration of the architecture is anticipated to result in a mobile robot controller which displays adaptive behaviour in unknown environments.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
Many algorithms have been developed to achieve motion segmentation for video surveillance. The algorithms produce varying performances under the infinite amount of changing conditions. It has been recognised that individually these algorithms have useful properties. Fusing the statistical result of these algorithms is investigated, with robust motion segmentation in mind.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced.
Resumo:
This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.
Resumo:
In domain of intelligent buildings, saving energy in buildings and increasing preferences of occupants are two important factors. These factors are the important keys for evaluating the performance of work environment. In recent years, many researchers combine these areas to create the system that can change from original to the modern work environment called intelligent work environment. Due to advance of agent technology, it has received increasing attention in the area of intelligent pervasive environments. In this paper, we review several issues in intelligent buildings, with respect to the implementation of control system for intelligent buildings via multi-agent systems. Furthermore, we present the MASBO (Multi-Agent System for Building cOntrol) that has been implemented for controlling the building facilities to reach the balancing between energy efficiency and occupant’s comfort. In addition to enhance the MASBO system, the collaboration through negotiation among agents is presented.
Resumo:
Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.