867 resultados para Processing Information


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Business practices vary from one company to another and business practices often need to be changed due to changes of business environments. To satisfy different business practices, enterprise systems need to be customized. To keep up with ongoing business practice changes, enterprise systems need to be adapted. Because of rigidity and complexity, the customization and adaption of enterprise systems often takes excessive time with potential failures and budget shortfall. Moreover, enterprise systems often drag business behind because they cannot be rapidly adapted to support business practice changes. Extensive literature has addressed this issue by identifying success or failure factors, implementation approaches, and project management strategies. Those efforts were aimed at learning lessons from post implementation experiences to help future projects. This research looks into this issue from a different angle. It attempts to address this issue by delivering a systematic method for developing flexible enterprise systems which can be easily tailored for different business practices or rapidly adapted when business practices change. First, this research examines the role of system models in the context of enterprise system development; and the relationship of system models with software programs in the contexts of computer aided software engineering (CASE), model driven architecture (MDA) and workflow management system (WfMS). Then, by applying the analogical reasoning method, this research initiates a concept of model driven enterprise systems. The novelty of model driven enterprise systems is that it extracts system models from software programs and makes system models able to stay independent of software programs. In the paradigm of model driven enterprise systems, system models act as instructors to guide and control the behavior of software programs. Software programs function by interpreting instructions in system models. This mechanism exposes the opportunity to tailor such a system by changing system models. To make this true, system models should be represented in a language which can be easily understood by human beings and can also be effectively interpreted by computers. In this research, various semantic representations are investigated to support model driven enterprise systems. The significance of this research is 1) the transplantation of the successful structure for flexibility in modern machines and WfMS to enterprise systems; and 2) the advancement of MDA by extending the role of system models from guiding system development to controlling system behaviors. This research contributes to the area relevant to enterprise systems from three perspectives: 1) a new paradigm of enterprise systems, in which enterprise systems consist of two essential elements: system models and software programs. These two elements are loosely coupled and can exist independently; 2) semantic representations, which can effectively represent business entities, entity relationships, business logic and information processing logic in a semantic manner. Semantic representations are the key enabling techniques of model driven enterprise systems; and 3) a brand new role of system models; traditionally the role of system models is to guide developers to write system source code. This research promotes the role of system models to control the behaviors of enterprise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The School of Electrical and Electronic Systems Engineering of Queensland University of Technology (like many other universities around the world) has recognised the importance of complementing the teaching of signal processing with computer based experiments. A laboratory has been developed to provide a "hands-on" approach to the teaching of signal processing techniques. The motivation for the development of this laboratory was the cliche "What I hear I remember but what I do I understand." The laboratory has been named as the "Signal Computing and Real-time DSP Laboratory" and provides practical training to approximately 150 final year undergraduate students each year. The paper describes the novel features of the laboratory, techniques used in the laboratory based teaching, interesting aspects of the experiments that have been developed and student evaluation of the teaching techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of automatic speech recognition systems deteriorates in the presence of noise. One known solution is to incorporate video information with an existing acoustic speech recognition system. We investigate the performance of the individual acoustic and visual sub-systems and then examine different ways in which the integration of the two systems may be performed. The system is to be implemented in real time on a Texas Instruments' TMS320C80 DSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines whether, in the presentation of financial information, digital formats address the concern over users’ functional fixation. The accounting literature indicates that the presentation of financial information either within the financial statements or in the notes to the financial statements often creates functional fixation where users of financial statements fail to adjust for differences in accounting policy. This leads users to judge what would otherwise be identical financial situations as being different due to the different accounting policies and methods adopted. It has been suggested that the use of digital formats in presenting financial reports may overcome functional fixation. Using an experimental design involving accountants in public practice, the results indicate that the use of digital formats to present financial reports does not fully overcome the issue of functional fixation in the processing of financial information. Although the participants were able to identify and extract relevant information, irrespective of whether or not the information was presented within the financial statements or in the notes to the accounts, the evidence indicates that functional fixation remained when the participants made final decisions based on available information. This suggests that functional fixation may not be caused by access to or extraction of information but by the level of perceived significance based on where the information is reported in the financial statements. In general, the results indicate that current technology may not be able to fully reduce functional fixation in the evaluation of financial information prepared in accordance with different accounting policies and methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing importance and need of data processing for information extraction is vital for Web databases. Due to the sheer size and volume of databases, retrieval of relevant information as needed by users has become a cumbersome process. Information seekers are faced by information overloading - too many result sets are returned for their queries. Moreover, too few or no results are returned if a specific query is asked. This paper proposes a ranking algorithm that gives higher preference to a user’s current search and also utilizes profile information in order to obtain the relevant results for a user’s query.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops and evaluates an enhanced corpus based approach for semantic processing. Corpus based models that build representations of words directly from text do not require pre-existing linguistic knowledge, and have demonstrated psychologically relevant performance on a number of cognitive tasks. However, they have been criticised in the past for not incorporating sufficient structural information. Using ideas underpinning recent attempts to overcome this weakness, we develop an enhanced tensor encoding model to build representations of word meaning for semantic processing. Our enhanced model demonstrates superior performance when compared to a robust baseline model on a number of semantic processing tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and effective down-sample algorithm, Peak-Hold-Down-Sample (PHDS) algorithm is developed in this paper to enable a rapid and efficient data transfer in remote condition monitoring applications. The algorithm is particularly useful for high frequency Condition Monitoring (CM) techniques, and for low speed machine applications since the combination of the high sampling frequency and low rotating speed will generally lead to large unwieldy data size. The effectiveness of the algorithm was evaluated and tested on four sets of data in the study. One set of the data was extracted from the condition monitoring signal of a practical industry application. Another set of data was acquired from a low speed machine test rig in the laboratory. The other two sets of data were computer simulated bearing defect signals having either a single or multiple bearing defects. The results disclose that the PHDS algorithm can substantially reduce the size of data while preserving the critical bearing defect information for all the data sets used in this work even when a large down-sample ratio was used (i.e., 500 times down-sampled). In contrast, the down-sample process using existing normal down-sample technique in signal processing eliminates the useful and critical information such as bearing defect frequencies in a signal when the same down-sample ratio was employed. Noise and artificial frequency components were also induced by the normal down-sample technique, thus limits its usefulness for machine condition monitoring applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.