945 resultados para Probability Distribution Function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ma (1996) studied the random order mechanism, a matching mechanism suggested by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that the random order mechanism does not always reach all stable matchings. Although Ma's (1996) result is true, we show that the probability distribution he presented - and therefore the proof of his Claim 2 - is not correct. The mistake in the calculations by Ma (1996) is due to the fact that even though the example looks very symmetric, some of the calculations are not as ''symmetric.''

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We motivate procedural fairness for matching mechanisms and study two procedurally fair and stable mechanisms: employment by lotto (Aldershof et al., 1999) and the random order mechanism (Roth and Vande Vate, 1990, Ma, 1996). For both mechanisms we give various examples of probability distributions on the set of stable matchings and discuss properties that differentiate employment by lotto and the random order mechanism. Finally, we consider an adjustment of the random order mechanism, the equitable random order mechanism, that combines aspects of procedural and "endstate'' fairness. Aldershof et al. (1999) and Ma (1996) that exist on the probability distribution induced by both mechanisms. Finally, we consider an adjustment of the random order mechanism, the equitable random order mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When two candidates of different quality compete in a one dimensional policy space, the equilibrium outcomes are asymmetric and do not correspond to the median. There are three main effects. First, the better candidate adopts more centrist policies than the worse candidate. Second, the equilibrium is statistical, in the sense that it predicts a probability distribution of outcomes rather than a single degenerate outcome. Third, the equilibrium varies systematically with the level of uncertainty about the location of the median voter. We test these three predictions using laboratory experiments, and find strong support for all three. We also observe some biases and show that they canbe explained by quantal response equilibrium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that the procedure proposed recently by Clauset et al. [SIAM Rev. 51, 661 (2009)] does not perform well as it rejects the power-law hypothesis even for power-law synthetic data. In contrast, we establish the existence of a power-law exponent with a value around 1.1 for the half-life density, which can be explained by the sharp relationship between decay rate and released energy, for different disintegration types. For the case of alpha emission, this relationship constitutes an original mechanism of power-law generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Report for the scientific sojourn at the University of Reading, United Kingdom, from January until May 2008. The main objectives have been firstly to infer population structure and parameters in demographic models using a total of 13 microsatellite loci for genotyping approximately 30 individuals per population in 10 Palinurus elephas populations both from Mediterranean and Atlantic waters. Secondly, developing statistical methods to identify discrepant loci, possibly under selection and implement those methods using the R software environment. It is important to consider that the calculation of the probability distribution of the demographic and mutational parameters for a full genetic data set is numerically difficult for complex demographic history (Stephens 2003). The Approximate Bayesian Computation (ABC), based on summary statistics to infer posterior distributions of variable parameters without explicit likelihood calculations, can surmount this difficulty. This would allow to gather information on different demographic prior values (i.e. effective population sizes, migration rate, microsatellite mutation rate, mutational processes) and assay the sensitivity of inferences to demographic priors by assuming different priors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tropical cyclones are affected by a large number of climatic factors, which translates into complex patterns of occurrence. The variability of annual metrics of tropical-cyclone activity has been intensively studied, in particular since the sudden activation of the North Atlantic in the mid 1990’s. We provide first a swift overview on previous work by diverse authors about these annual metrics for the North-Atlantic basin, where the natural variability of the phenomenon, the existence of trends, the drawbacks of the records, and the influence of global warming have been the subject of interesting debates. Next, we present an alternative approach that does not focus on seasonal features but on the characteristics of single events [Corral et al., Nature Phys. 6, 693 (2010)]. It is argued that the individual-storm power dissipation index (PDI) constitutes a natural way to describe each event, and further, that the PDI statistics yields a robust law for the occurrence of tropical cyclones in terms of a power law. In this context, methods of fitting these distributions are discussed. As an important extension to this work we introduce a distribution function that models the whole range of the PDI density (excluding incompleteness effects at the smallest values), the gamma distribution, consisting in a powerlaw with an exponential decay at the tail. The characteristic scale of this decay, represented by the cutoff parameter, provides very valuable information on the finiteness size of the basin, via the largest values of the PDIs that the basin can sustain. We use the gamma fit to evaluate the influence of sea surface temperature (SST) on the occurrence of extreme PDI values, for which we find an increase around 50 % in the values of these basin-wide events for a 0.49 C SST average difference. Similar findings are observed for the effects of the positive phase of the Atlantic multidecadal oscillation and the number of hurricanes in a season on the PDI distribution. In the case of the El Niño Southern oscillation (ENSO), positive and negative values of the multivariate ENSO index do not have a significant effect on the PDI distribution; however, when only extreme values of the index are used, it is found that the presence of El Niño decreases the PDI of the most extreme hurricanes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α & 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.