980 resultados para Primary Electron Donor
Resumo:
We have analyzed electronic transport through a single, 200-angstrom-thick, Ga0.74Al0.36As barrier embedded in GaAs. At low temperatures and high electric field, the Fowler-Nordheim regime is observed, indicating that the barrier acts as insulating layers. At higher temperatures the thermionic regime provides an apparent barrier height, decreasing with the field, which is equal to the expected band offset when extrapolated to zero field. However, for some samples, the current is dominated by the presence of electron traps located in the barrier. A careful analysis of the temperature and field behavior of this current allows to deduce that the mechanism involved is field-enhanced emission from electron traps. The defects responsible are tentatively identified as DX centers, resulting from the contamination of the barrier by donor impurities.
Resumo:
Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].
Resumo:
The free electron concentration of as-grown liquid encapsulated Czochralski (LEC) InP measured by Hall effect is much higher than the concentration of net donor impurity determined by glow discharge mass spectroscopy. Evidence of the existence of a native donor hydrogen-indium vacancy complex in LEC undoped and Fe-doped InP materials can be observed with infrared absorption spectra. The concentration increase of the donor complex correlates with the increase of ionized deep acceptor iron impurity Fe~(2+) concentration in Fe-doped semi-insulating (SI) InP. These results indicate that the hydrogen-indium vacancy complex is an important donor defect in as-grown LEC InP, and that it has significant influence on the compensation in Fe-doped SI InP.
Resumo:
A new generation electron cooler has started operation in the heavy ion synchrotron CSRm which is used to increase the intensity of heavy ions. Transverse cooling of the ion beam after horizontal multi-turn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. In given accumulation time interval of 10 seconds, 108particles have been accumulated and accelerated to the final energy. The momentum spread after accumulation and acceleration in the 10−4 range has been demonstrated in six species of ion beams. Primary measurements of accumulation process varying with electron energy,electron beam current, electron beam profile, expansion factor and injection interval have been performed.The lifetimes of ion beams in the presence of electron beams were roughly measured with the help of DCCT signal.
Resumo:
To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stability of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB6 cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.
Resumo:
Based on several facts of CSRrn, such as the layout of the ring, the lattice parameters, exiting Schottky noise diagnosis equipment and fund, the primary stochastic cooling design of CSRm has been carried out. The optimum cooling time and the optimum cooling bandwidth axe obtained through simulation using the cooling function. The results indicate that the stochastic cooling is quite a powerful cooling method for CSRm. The comparison of the cooling effects of stochastic cooling and electron cooling in CSR are also presented. We can conclude that the combination of the two cooling methods on CSRrn will improve the beam cooling rate and quality beam greatly.
Resumo:
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole-transporting triphenylamine derivatives [N-(4-octoxylphenyl)diphenylamine, N,N'-di(4-octyloxylphenyl)-N,N'-diphenyl-1,4-phenylenediamine, and N,N'-di(4-octoxylphenyl)-N,N'-diphenylbenzidine] (donor) and electron-transporting oxadiazole unit (2,5-diphenyl-1,3,4-oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor-acceptor (D-A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene.
Resumo:
The extraction behavior of thorium(IV) sulfate by primary amine N1923 in imidazolium-based ionic liquid (IL) namely 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim]PF6) was systematically studied in this paper. Results showed that the extraction behavior was quite different from that using conventional solvent as diluent. A reversed micellar solubilization extraction mechanism was proposed for the extraction of thorium(IV) by N1923/[C(8)mim]PF6 via slope analysis method and polarized optical microscopy (POM)/transmission electron microscopy (TEM) observation. The salt-out agent, Na2SO4, was demonstrated to prompt this extraction mechanism.
Resumo:
Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.
Resumo:
Near-threshold ionization of He has been studied by using a uniform semiclassical wavefunction for the two outgoing electrons in the final channel. The quantum mechanical transition amplitude for the direct and exchange scattering derived earlier by using the Kohn variational principle has been used to calculate the triple differential cross sections. Contributions from singlets and triplets are critically examined near the threshold for coplanar asymmetric geometry with equal energy sharing by the two outgoing electrons. It is found that in general the tripler contribution is much smaller compared to its singlet counterpart. However, at unequal scattering angles such as theta (1) = 60 degrees, theta (2) = 120 degrees the smaller peaks in the triplet contribution enhance both primary and secondary TDCS peaks. Significant improvements of the primary peak in the TDCS are obtained for the singlet results both in symmetric and asymmetric geometry indicating the need to treat the classical action variables without any approximation. Convergence of these cross sections are also achieved against the higher partial waves. Present results are compared with absolute and relative measurements of Rosel et al (1992 Phys. Rev. A 46 2539) and Selles et al (1987 J. Phys. B. At. Mel. Phys. 20 5195) respectively.
Resumo:
The technique of double translational energy spectroscopy.(DTES), recently successfully developed in this laboratory for use with targets of atomic hydrogen, has been used to study one-electron capture by ground-state N2+(2s22p)(2)p(0) ions in collisions with hydrogen atoms at energies within the range 0.8-6.0 keV. Cross sections for the formation of the main excited product channels have been determined. The measurements allow a re-evaluation of our previous TES measurements carried out with N2+ primary beams containing an admixture of metastable N2+(2s2p2)(4)p ions. The main findings of these earlier measurements are confirmed and the DTES measurements now remove any ambiguity in interpretation of the experimental data. While recent theoretical studies correctly predict the two main N+ D-3(0) and P-3(0) product channels, the quantitative agreement with experiment is only partially satisfactory.
Resumo:
Using two complementary experimental methods, we have measured partial (mass-resolved) cross-sections for dissociative electron attachment to the molecule trifluoromethyl sulfurpentafluoride (SF5CF3) at the gas temperature T-G = 300 K over a broad range of electron energies (E = 0.001-12 eV). The absolute scale for these cross-sections was obtained with reference to the thermal (T = 300 K) rate coefficient for anion formation (8.0(3) x 10(-8) cm(3) s(-1)). Below 1 eV, SF5- is the dominant product anion and formed through the lowest anion state which cuts the neutral SF5CF3 potential close to the S-C equilibrium distance. The highly resolved laser photoelectron attachment data exhibit a downward Wigner cusp at 86meV, indicating that the nu(4)(alpha(1)) vibrational mode is important for the primary attachment dynamics. Both SF5- and F- anions are formed with similar yields through the first excited resonance located near 3.6eV. Towards higher energies, the anions CF3-, SF4-, and SF3- are also produced. Summation of the partial cross-sections yields a total absolute cross-section for anion formation over the energy range 0.001-12 eV. This is used to calculate the dependence of the rate coefficient for dissociative electron attachment over a broad range of electron temperatures for the fixed gas temperature T-G = 300 K; good agreement is found between the calculated values and those obtained in a drift tube experiment. In addition to the experimental work, semiempirical R-matrix calculations have been Carried out for the energy dependence of the cross-section for SF5- formation. The experimental findings are semi-quantitatively recovered. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Results from a joint experimental and theoretical study of electron attachment to chloroform (CHCl3) molecules in the gas phase are reported. In an electron swarm study involving a pulsed Townsend technique with equal gas and electron temperatures, accurate attachment rate coefficients were determined over the temperature range 295-373 K; they show an Arrhenius-type rise with increasing temperature, corresponding to an activation energy of 0.11 (1) eV. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for Cl- formation from CHCl3 over the energy range 0.001-1.25 eV at the gas temperature T-G = 300 K was measured. It exhibits clear downward cusp structure at the threshold for excitation of one quantum of the vibrational symmetric deformation mode nu(3), indicating that this mode is active in the primary attachment process. With reference to our thermal attachment rate coefficient k(T = 300 K) = 3.9(2) x 10(-9) cm(3) s(-1), a new highly resolved absolute attachment cross section for T-G = 300 K was determined. This cross section is extended to higher energies by measurements, carried out with a pulsed electron beam apparatus which also provided new data for the distinctly weaker fragment anions HCl2- and CCl2-. The resulting total absolute cross section for anion formation is used to calculate the dependence of the attachment rate coefficient k(T-e;T-G) on electron temperature T-e over the range 50-15000 K at the fixed gas temperature T-G = 300 K. In addition, we report the dependence of the relative cross section for Cl- formation on gas temperature T-G = 310-435 K). For comparison with the experimental data, R-matrix calculations have been carried out for the dominant anion channel Cl-. The results recover the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3) and on the vibrational temperature. Our results are compared with those of previous electron beam and electron swarm experiments.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
Resumo:
UNLABELLED: Varicose veins may be due to weakness of the vein wall as a result of structural problems. There are conflicting findings in the literature about these problems especially concerning collagen, elastin and smooth muscle cells content. The aim of this study was to look at the structural abnormalities of varicose veins (with and without valvular incompetence).
MATERIALS AND METHODS: We studied 70 specimens of long saphenous veins from 35 patients (24 with varicose and 11 with normal veins). Two specimens were taken from each vein approximately 3-4 cm from the saphenofemoral junction. Vein specimens were processed for histological and electron microscopic studies. Both qualitative and quantitative analyses were performed to assess the degree of wall changes. Using the image analyzer, contents of collagen, elastin and smooth muscle cells, in addition to intimal and medial thickness, were measured.
RESULTS: Light microscopy revealed significant increase in intimal and medial thickness and collagen content of media and significant decrease in elastin content in varicose veins compared with normal veins. There was no statistical significant difference between varicose veins with and without saphenofemoral valve incompetence. Electron microscopy showed marked degenerative changes in intima and media of varicose veins.
CONCLUSION: The findings in our study supported the theory of primary weakness of the vein wall as a cause of varicosity. This weakness is due to intimal changes, disturbance in the connective tissue components and smooth muscle cells.