894 resultados para Prediction of scholastic success


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In studies of cognitive processing, the allocation of attention has been consistently linked to subtle, phasic adjustments in autonomic control. Both autonomic control of heart rate and control of the allocation of attention are known to decline with age. It is not known, however, whether characteristic individual differences in autonomic control and the ability to control attention are closely linked. To test this, a measure of parasympathetic function, vagal tone (VT) was computed from cardiac recordings from older and younger adults taken before and during performance of two attentiondemanding tasks - the Eriksen visual flanker task and the source memory task. Both tasks elicited event-related potentials (ERPs) that accompany errors, i.e., error-related negativities (ERNs) and error positivities (Pe's). The ERN is a negative deflection in the ERP signal, time-locked to responses made on incorrect trials, likely generated in the anterior cingulate. It is followed immediately by the Pe, a broad, positive deflection which may reflect conscious awareness of having committed an error. Age-attenuation ofERN amplitude has previously been found in paradigms with simple stimulus-response mappings, such as the flanker task, but has rarely been examined in more complex, conceptual tasks. Until now, there have been no reports of its being investigated in a source monitoring task. Age-attenuation of the ERN component was observed in both tasks. Results also indicated that the ERNs generated in these two tasks were generally comparable for young adults. For older adults, however, the ERN from the source monitoring task was not only shallower, but incorporated more frontal processing, apparently reflecting task demands. The error positivities elicited by 3 the two tasks were not comparable, however, and age-attenuation of the Pe was seen only in the more perceptual flanker task. For younger adults, it was Pe scalp topography that seemed to reflect task demands, being maximal over central parietal areas in the flanker task, but over very frontal areas in the source monitoring task. With respect to vagal tone, in the flanker task, neither the number of errors nor ERP amplitudes were predicted by baseline or on-task vagal tone measures. However, in the more difficult source memory task, lower VT was marginally associated with greater numbers of source memory errors in the older group. Thus, for older adults, relatively low levels of parasympathetic control over cardiac response coincided with poorer source memory discrimination. In both groups, lower levels of baseline VT were associated with larger amplitude ERNs, and smaller amplitude Pe's. Thus, low VT was associated in a conceptual task with a greater "emergency response" to errors, and at the same time, reduced awareness of having made them. The efficiency of an individual's complex cognitive processing was therefore associated with the flexibility of parasympathetic control of heart rate, in response to a cognitively challenging task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes an ancillary project to the Early Diagnosis of Mesothelioma and Lung Cancer in Prior Asbestos Workers study and was conducted to determine the effects of asbestos exposure, pulmonary function and cigarette smoking in the prediction of pulmonary fibrosis. 613 workers who were occupationally exposed to asbestos for an average of 25.9 (SD=14.69) years were sampled from Sarnia, Ontario. A structured questionnaire was administered during a face-to-face interview along with a low-dose computed tomography (LDCT) of the thorax. Of them, 65 workers (10.7%, 95%CI 8.12—12.24) had LDCT-detected pulmonary fibrosis. The model predicting fibrosis included the variables age, smoking (dichotomized), post FVC % splines and post- FEV1% splines. This model had a receiver operator characteristic area under the curve of 0.738. The calibration of the model was evaluated with R statistical program and the bootstrap optimism-corrected calibration slope was 0.692. Thus, our model demonstrated moderate predictive performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This qualitative investigation explored the professional experiences of 3 Ontario teachers who have mobility challenges. The study’s participants (2 male and 1 female) were Ontario teachers who have permanent physical disabilities that challenge their means of mobility. Each participant has an Ontario Certified Teaching License and has either taught or is currently teaching in an Ontario school. My primary source of data collection was a semi-structured face-to-face interview with each participant. The focus of the interview was participant perspectives. Data analysis was accomplished in 3 phases. Data analysis generated 5 prominent themes of commonality among participants: (a) independence and sacrifice, (b) living with pain, (c) barriers and obstacles, (d) the importance of communication, and (e) professional benefits and personal rewards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Later-born siblings of children with autism spectrum disorder (ASD) are considered at biological risk for ASD and the broader autism phenotype. Early screening may detect early signs of ASD and facilitate intervention as soon as possible. This follow-up study revisits and re-examines a second-degree autism screener for children at biological risk of autism, the Parent Observation Early Markers Scale (POEMS, Feldman et al., 2012). Using available follow-up information, 110 children (the original 108 infants plus 2 infants recruited after the completion of the original study) were divided into three groups: diagnosed group (n = 13), lost diagnosis group (n = 5), and undiagnosed group (n = 92). The POEMS continued to show acceptable predictive validity. The POEMS total scores and mean number of elevated items were significantly higher in the diagnosed group than the undiagnosed group. The lost diagnosis group did not differ from the undiagnosed group on POEMS total scores and elevated items at any age, but the lost diagnosis group had significantly lower total scores and number of elevated items than the diagnosed group starting at 18 months. Both ASD core and subsidiary behaviours differentiated the diagnosed and undiagnosed groups from 9−36 months of age. Using 70 as a cut-off score, sensitivity, specificity, and positive predictive value (PPV) were .69, .84, and .38, respectively. The study provides further evidence that the POEMS may serve as a low-cost early screener for ASD in at risk children and pinpoint specific developmental and behavioural problems that may be amenable to very early intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le trouble du déficit de l’attention/hyperactivité (TDA/H) est un des troubles comportementaux le plus commun chez les enfants. TDAH a une étiologie complexe et des traitements efficaces. Le médicament le plus prescrit est le méthylphénidate, un psychostimulant qui bloque le transporteur de la dopamine et augmente la disponibilité de la dopamine dans la fente synaptique. Des études précliniques et cliniques suggèrent que le cortisol peut potentialiser les effets de la dopamine. Un dysfonctionnement du système hypothalamo-hypophyso-surrénalien (HHS) est associé avec plusieurs maladies psychiatriques comme la dépression, le trouble bipolaire, et l’anxiété. Nous avons fait l’hypothèse que le cortisol influence l’efficacité du traitement des symptômes du TDAH par le méthylphénidate. L’objectif de cette étude est de mesurer les niveaux de cortisol le matin au réveil et en réponse à une prise de sang dans un échantillon d’enfants diagnostiqué avec TDAH âgé de 8 ans. Le groupe était randomisé dans un protocole en chassé croisé et en double aveugle avec trois doses de méthylphénidate et un placebo pour une période de quatre semaines. Les enseignants et les parents ont répondu aux questionnaires SWAN et à une échelle d’évaluation des effets secondaires. Les résultats ont démontrés qu’un niveau de cortisol élevé au réveil prédit les sujets qui ne répondent pas au traitement du TDAH, si on se fie aux rapports des parents. En plus, la réactivité au stress élevé suggère un bénéfice additionnel d’une dose élevée de méthylphénidate selon les enseignants. Aussi, les parents rapportent une association entre la présence de troubles anxieux co-morbide avec le TDAH et une meilleure réponse à une dose élevée. Cette étude suggère qu’une forte réactivité de l’axe HHS améliore la réponse clinique à des doses élevées, mais qu’une élévation chronique du niveau de cortisol pourrait être un marqueur pour les non répondeurs. Les résultats de cette étude doivent être considérés comme préliminaires et nécessitent des tests plus approfondis des interactions possibles entre les médicaments utilisés pour traiter le TDAH et l’axe HHS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectif: Évaluer l'efficacité du dépistage de l’hypertension gestationnelle par les caractéristiques démographiques maternelles, les biomarqueurs sériques et le Doppler de l'artère utérine au premier et au deuxième trimestre de grossesse. Élaborer des modèles prédictifs de l’hypertension gestationnelle fondées sur ces paramètres. Methods: Il s'agit d'une étude prospective de cohorte incluant 598 femmes nullipares. Le Doppler utérin a été étudié par échographie transabdominale entre 11 +0 à 13 +6 semaines (1er trimestre) et entre 17 +0 à 21 +6 semaines (2e trimestre). Tous les échantillons de sérum pour la mesure de plusieurs biomarqueurs placentaires ont été recueillis au 1er trimestre. Les caractéristiques démographiques maternelles ont été enregistrées en même temps. Des courbes ROC et les valeurs prédictives ont été utilisés pour analyser la puissance prédictive des paramètres ci-dessus. Différentes combinaisons et leurs modèles de régression logistique ont été également analysés. Résultats: Parmi 598 femmes, on a observé 20 pré-éclampsies (3,3%), 7 pré-éclampsies précoces (1,2%), 52 cas d’hypertension gestationnelle (8,7%) , 10 cas d’hypertension gestationnelle avant 37 semaines (1,7%). L’index de pulsatilité des artères utérines au 2e trimestre est le meilleur prédicteur. En analyse de régression logistique multivariée, la meilleure valeur prédictive au 1er et au 2e trimestre a été obtenue pour la prévision de la pré-éclampsie précoce. Le dépistage combiné a montré des résultats nettement meilleurs comparés avec les paramètres maternels ou Doppler seuls. Conclusion: Comme seul marqueur, le Doppler utérin du deuxième trimestre a la meilleure prédictive pour l'hypertension, la naissance prématurée et la restriction de croissance. La combinaison des caractéristiques démographiques maternelles, des biomarqueurs sériques maternels et du Doppler utérin améliore l'efficacité du dépistage, en particulier pour la pré-éclampsie nécessitant un accouchement prématuré.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La fibrillation auriculaire (FA) est une arythmie touchant les oreillettes. En FA, la contraction auriculaire est rapide et irrégulière. Le remplissage des ventricules devient incomplet, ce qui réduit le débit cardiaque. La FA peut entraîner des palpitations, des évanouissements, des douleurs thoraciques ou l’insuffisance cardiaque. Elle augmente aussi le risque d'accident vasculaire. Le pontage coronarien est une intervention chirurgicale réalisée pour restaurer le flux sanguin dans les cas de maladie coronarienne sévère. 10% à 65% des patients qui n'ont jamais subi de FA, en sont victime le plus souvent lors du deuxième ou troisième jour postopératoire. La FA est particulièrement fréquente après une chirurgie de la valve mitrale, survenant alors dans environ 64% des patients. L'apparition de la FA postopératoire est associée à une augmentation de la morbidité, de la durée et des coûts d'hospitalisation. Les mécanismes responsables de la FA postopératoire ne sont pas bien compris. L'identification des patients à haut risque de FA après un pontage coronarien serait utile pour sa prévention. Le présent projet est basé sur l'analyse d’électrogrammes cardiaques enregistrées chez les patients après pontage un aorte-coronaire. Le premier objectif de la recherche est d'étudier si les enregistrements affichent des changements typiques avant l'apparition de la FA. Le deuxième objectif est d'identifier des facteurs prédictifs permettant d’identifier les patients qui vont développer une FA. Les enregistrements ont été réalisés par l'équipe du Dr Pierre Pagé sur 137 patients traités par pontage coronarien. Trois électrodes unipolaires ont été suturées sur l'épicarde des oreillettes pour enregistrer en continu pendant les 4 premiers jours postopératoires. La première tâche était de développer un algorithme pour détecter et distinguer les activations auriculaires et ventriculaires sur chaque canal, et pour combiner les activations des trois canaux appartenant à un même événement cardiaque. L'algorithme a été développé et optimisé sur un premier ensemble de marqueurs, et sa performance évaluée sur un second ensemble. Un logiciel de validation a été développé pour préparer ces deux ensembles et pour corriger les détections sur tous les enregistrements qui ont été utilisés plus tard dans les analyses. Il a été complété par des outils pour former, étiqueter et valider les battements sinusaux normaux, les activations auriculaires et ventriculaires prématurées (PAA, PVA), ainsi que les épisodes d'arythmie. Les données cliniques préopératoires ont ensuite été analysées pour établir le risque préopératoire de FA. L’âge, le niveau de créatinine sérique et un diagnostic d'infarctus du myocarde se sont révélés être les plus importants facteurs de prédiction. Bien que le niveau du risque préopératoire puisse dans une certaine mesure prédire qui développera la FA, il n'était pas corrélé avec le temps de l'apparition de la FA postopératoire. Pour l'ensemble des patients ayant eu au moins un épisode de FA d’une durée de 10 minutes ou plus, les deux heures précédant la première FA prolongée ont été analysées. Cette première FA prolongée était toujours déclenchée par un PAA dont l’origine était le plus souvent sur l'oreillette gauche. Cependant, au cours des deux heures pré-FA, la distribution des PAA et de la fraction de ceux-ci provenant de l'oreillette gauche était large et inhomogène parmi les patients. Le nombre de PAA, la durée des arythmies transitoires, le rythme cardiaque sinusal, la portion basse fréquence de la variabilité du rythme cardiaque (LF portion) montraient des changements significatifs dans la dernière heure avant le début de la FA. La dernière étape consistait à comparer les patients avec et sans FA prolongée pour trouver des facteurs permettant de discriminer les deux groupes. Cinq types de modèles de régression logistique ont été comparés. Ils avaient une sensibilité, une spécificité et une courbe opérateur-receveur similaires, et tous avaient un niveau de prédiction des patients sans FA très faible. Une méthode de moyenne glissante a été proposée pour améliorer la discrimination, surtout pour les patients sans FA. Deux modèles ont été retenus, sélectionnés sur les critères de robustesse, de précision, et d’applicabilité. Autour 70% patients sans FA et 75% de patients avec FA ont été correctement identifiés dans la dernière heure avant la FA. Le taux de PAA, la fraction des PAA initiés dans l'oreillette gauche, le pNN50, le temps de conduction auriculo-ventriculaire, et la corrélation entre ce dernier et le rythme cardiaque étaient les variables de prédiction communes à ces deux modèles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thunderstorm is one of the most spectacular weather phenomena in the atmosphere. Many parts over the Indian region experience thunderstorms at higher frequency during pre-monsoon months (March- May), when the atmosphere is highly unstable because of high temperatures prevailing at lower levels. Most dominant feature of the weather during the pre-monsoon season over the eastern Indo-Gangetic plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’wester’ or ‘Kalbaishakhi’. The severe thunderstorms associated with thunder, squall line, lightning and hail cause extensive losses in agriculture, damage to structure and also loss of life. The casualty due to lightning associated with thunderstorms in this region is the highest in the world. The highest numbers of aviation hazards are reported during occurrence of these thunderstorms. In India, 72% of tornadoes are associated with this thunderstorm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.