824 resultados para Power system planning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a branch-and-bound algorithm to solve the multi-stage transmission expansion planning problem. The well known transportation model is employed, nevertheless the algorithm can be extended to hybrid models or to more complex ones such as the DC model. Tests with a realistic power system were carried out in order to show the performance of the algorithm for the expansion plan executed for different time frames. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints in full competitive market, assuming that all generation programming plans present in the system operation are known. The methodology let us find an optimal transmission network expansion plan that allows the power system to operate adequately in each one of the generation programming plans specified in the full competitive market case, including a single contingency situation with generation rescheduling using the security (n-1) criterion. In this context, the centralized expansion planning with security constraints and the expansion planning in full competitive market are subsets of the proposal presented in this paper. The model provides a solution using a genetic algorithm designed to efficiently solve the reliable expansion planning in full competitive market. The results obtained for several known systems from the literature show the excellent performance of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch-and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method. ©2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmission expansion planning problem in modern power systems is a large-scale, mixed-integer, nonlinear and non-convex problem. this paper presents a new mathematical model and a constructive heuristic algorithm (CHA) for solving transmission expansion planning problem under new environment of electricity restructuring. CHA finds an acceptable solution in an iterative process, where in each step a circuit is chosen using a sensitivity index and added to the system. The proposed model consider multiple generation scenarios therefore the methodology finds high quality solution in which it allows the power system operate adequacy in an environment with multiple generators scenarios. Case studies and simulation results using test systems show possibility of using Constructive heuristic algorithm in an open access system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, to solve the reconfiguration problem of radial distribution systems a scatter search, which is a metaheuristic-based algorithm, is proposed. In the codification process of this algorithm a structure called node-depth representation is used. It then, via the operators and from the electrical power system point of view, results finding only radial topologies. In order to show the effectiveness, usefulness, and the efficiency of the proposed method, a commonly used test system, 135-bus, and a practical system, a part of Sao Paulo state's distribution network, 7052 bus, are conducted. Results confirm the efficiency of the proposed algorithm that can find high quality solutions satisfying all the physical and operational constraints of the problem.