936 resultados para Post-transcriptional regulation of gene expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokine-induced transcription of the serum amyloid A3 (SAA3) gene promoter requires a transcriptional enhancer that contains three functional elements: two C/EBP-binding sites and a third site that interacts with a constitutively expressed transcription factor, SAA3 enhancer factor (SEF). Deletion or site-specific mutations in the SEF-binding site drastically reduced SAA3 promoter activity, strongly suggesting that SEF is important in SAA3 promoter function. To further elucidate its role in the regulation of the SAA3 gene, we purified SEF from HeLa cell nuclear extracts to near homogeneity by using conventional liquid chromatography and DNA-affinity chromatography. Ultraviolet cross-linking and Southwestern experiments indicated that SEF consisted of a single polypeptide with an apparent molecular mass of 65 kDa. Protein sequencing, oligonucleotide competition and antibody supershift experiments identified SEF as transcription factor LBP-1c/CP2/LSF. Cotransfection of SEF expression plasmid with SAA3-luciferase reporter resulted in 3- to 5-fold activation of SAA3 promoter. Interestingly, when SEF-transfected cells were treated with either conditioned medium (CM) or interleukin (IL) 1, the SAA3 promoter was synergistically activated in a dose-dependent manner. Furthermore, when SEF-binding site was mutated, the response of SAA3 promoter to IL-1 or CM stimulation was abolished or drastically decreased, suggesting that SEF may functionally cooperate with an IL-1-inducible transcription factor. Indeed, our functional studies showed that NFκB is a key transcription factor that mediates the IL-1-induced expression of SAA3 gene, and that SEF can synergize with NFκBp65 to activate SAA3 promoter. By coimmunoprecipitation experiments, we found that SEF could specifically interact with NFκBp65, and that the association of these two factors was enhanced upon IL-1 and CM stimulation. This suggests that the molecular basis for the functional synergy between SEF and NFκB may be due to the ability of SEF to physically interact with NPκB. In addition to its interaction with SEF, NFκB-dependent activation also requires the weak κB site in the C element and its interaction with C/EBP. Besides its role in regulating SAA3 gene expression, we provide evidence that SEF could also bind in a sequence-specific manner to the promoters of α2-macroglobulin, Aα fibrinogen, and 6–16 genes and to an intronic enhancer of the human Wilm's tumor 1 gene, suggesting a functional role in the regulation of these genes. By coimmunoprecipitation experiments, we determined that SEF could specifically associate with both Stat3 and Stat2 upon cytokine stimulation. To examine the functional roles of such interactions, we evaluated the effects of SEF on the transcriptional regulation of two reporter genes: Aα fibrinogen and 6–16, which are IL-6- and interferon-α-responsive, respectively. Our results showed that cotransfection of SEF expression plasmid can activate the expression of Aα fibrinogen gene and 6–16 gene. Moreover, SEF can dramatically enhance the interferon-α-induced expression of 6–16 gene and IL-6-induced expression of Aα fibrinogen gene, suggesting that SEF may functionally cooperate with ISGF3 and Stat3 to mediate interferon-α and IL-6 signaling. ^ Our findings that SEF can interact with multiple cytokine-inducible transcription factors to mediate the expression of target genes open a new avenue of investigation of cooperative transcriptional regulation of gene expression, and should further our understanding of differential gene expression in response to a specific stimulus. In summary, our data provide evidence that SEF can mediate the signaling of different cytokines by interacting with various cytokine-inducible transcription factors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication/interaction and by unusual repetitive and restricted behaviors and interests. ASD often co-occurs in the same families with other neuropsychiatric diseases (NPD), such as intellectual disability, schizophrenia, epilepsy, depression and attention deficit hyperactivity disorder. Genetic factors have an important role in ASD etiology. Multiple copy number variants (CNVs) and single nucleotide variants (SNVs) in candidate genes have been associated with an increased risk to develop ASD. Nevertheless, recent heritability estimates and the high genotypic and phenotypic heterogeneity characteristic of ASD indicate a role of environmental and epigenetic factors, such as long noncoding RNA (lncRNA) and microRNA (miRNA), as modulators of genetic expression and further clinical presentation. Both miRNA and lncRNA are functional RNA molecules that are transcribed from DNA but not translated into proteins, instead they act as powerful regulators of gene expression. While miRNA are small noncoding RNAs with 22-25 nucleotides in length that act at the post-transcriptional level of gene expression, the lncRNA are bigger molecules (>200 nucleotides in length) that are capped, spliced, and polyadenylated, similar to messenger RNA. Although few lncRNA were well characterized until date, there is a great evidence that they are implicated in several levels of gene expression (transcription/post-transcription/post-translation, organization of protein complexes, cell– cell signaling as well as recombination) as shown in figure 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most malignant variant of human glial tumors. A prominent feature of this tumor is the occurrence of necrosis and vascular proliferation. The regulation of glial neovascularization is still poorly understood and the characterization of factors involved in this process is of major clinical interest. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine released by leukocytes and by a variety of cells outside of the immune system. Recent work has shown that MIF may function to regulate cellular differentiation and proliferation in normal and tumor-derived cell lines, and may also contribute to the neovascularization of tumors. Our immunohistological analysis of MIF distribution in GBM tissues revealed the strong MIF protein accumulation in close association with necrotic areas and in tumor cells surrounding blood vessels. In addition, MIF expression was frequently associated with the presence of the tumor-suppressor gene p53. To substantiate the concept that MIF might be involved in the regulation of angiogenesis in GBM, we analyzed the MIF gene and protein expression under hypoxic and hypoglycemic stress conditions in vitro. Northern blot analysis showed a clear increase of MIF mRNA after hypoxia and hypoglycemia. We could also demonstrate that the increase of MIF transcripts on hypoxic stress can be explained by a profound transcriptional activation of the MIF gene. In parallel to the increase of MIF transcripts, we observed a significant rise in extracellular MIF protein on angiogenic stimulation. The data of our preliminary study suggest that the up-regulation of MIF expression during hypoxic and hypoglycemic stress might play a critical role for the neovascularization of glial tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors involved in regulating tissue specific gene expression play a major role in cell differentiation. In order to further understand the differentiation events occurring during hematopoiesis, a myeloid specific gene was characterized, the expression pattern during hematopoiesis was analyzed, and the mechanisms governing its regulation were assessed. Previously, our laboratory isolated an anonymous cDNA clone, pD-D1, which displayed preferential expression in myeloid cells. From nucleotide sequencing of overlapping cDNA clones I determined that the D-D1 message encodes a hematopoietic proteoglycan core protein (HpPG). The expression pattern of the gene was assessed by in situ hybridization of bone marrow and peripheral blood samples. The gene was shown to be expressed, at variable levels, in all leukocytes analyzed, including cells from every stage of neutrophil development. In an attempt to ascertain the differentiation time point in which the HpPG gene is initially expressed, more immature populations of leukemic myeloblasts were assessed by northern blot analysis. Though the initial point of expression was not obtained, an up-regulatory event was discovered corresponding to a time point in which granule genesis occurs. This finding is consistent with prior observations of extensive packaging of proteoglycans into the secretory granules of granule producing hematopoietic cells. The HpPG gene was also found to be expressed at low levels in all stages of lymphocyte development analyzed, suggesting that the HpPG gene is initially expressed before the decision for myeloid-lymphoid differentiation. To assess the mechanism for the up-regulatory event, a K562 in vitro megakaryocytic differentiation system was used. Nuclear run-off analyses in this system demonstrated the up-regulation to be under transcriptional control. In addition, the HpPG gene was found to be down regulated during macrophage differentiation of HL60 cells and was also shown to be transcriptionally controlled. These results indicate that there are multiple points of transcriptional regulation of the HpPG gene during differentiation. Furthermore, the factors regulating the gene at these time points are likely to play an important role in the differentiation of granule producing cells and macrophages. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To create a universal system for the control of gene expression, we have studied methods for the construction of novel polydactyl zinc finger proteins that recognize extended DNA sequences. Elsewhere we have described the generation of zinc finger domains recognizing sequences of the 5′-GNN-3′ subset of a 64-member zinc finger alphabet. Here we report on the use of these domains as modular building blocks for the construction of polydactyl proteins specifically recognizing 9- or 18-bp sequences. A rapid PCR assembly method was developed that, together with this predefined set of zinc finger domains, provides ready access to 17 million novel proteins that bind the 5′-(GNN)6-3′ family of 18-bp DNA sites. To examine the efficacy of this strategy in gene control, the human erbB-2 gene was chosen as a model. A polydactyl protein specifically recognizing an 18-bp sequence in the 5′-untranslated region of this gene was converted into a transcriptional repressor by fusion with Krüppel-associated box (KRAB), ERD, or SID repressor domains. Transcriptional activators were generated by fusion with the herpes simplex VP16 activation domain or with a tetrameric repeat of VP16’s minimal activation domain, termed VP64. We demonstrate that both gene repression and activation can be achieved by targeting designed proteins to a single site within the transcribed region of a gene. We anticipate that gene-specific transcriptional regulators of the type described here will find diverse applications in gene therapy, functional genomics, and the generation of transgenic organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a sigma(54)-dependent manner. A more complete picture of the sigma(54) regulon was achieved by combining the transcriptome data with an in silico search for potential sigma(54)-dependent promoters, using a position weight matrix approach. One of these sigma(54)-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a sigma(54)-dependent promoter. Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the sigma(54) regulon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is the etiologic agent of the Paracoccidioidomycosis the most common systemic mycosis in Latin America. Little is known about the regulation of genes involved in the innate immune host response to P. brasiliensis. We therefore examined the kinetic profile of gene expression of peritoneal macrophage infected with P. brasiliensis. Total RNA from macrophages at 6, 24 and 48 h was extracted, hybridized onto nylon membranes and analyzed. An increase in the transcription of a number of pro-inflammatory molecules encoding membrane proteins, metalloproteases, involved in adhesion and phagocytosis, are described. We observed also the differential expression of genes whose products may cause apoptotic events induced at 24 h. In addition, considering the simultaneous analyses of differential gene expression for the pathogen reported before by our group, at six hours post infection, we propose a model at molecular level for the P. brasiliensis-macrophage early interaction. In this regard, P. brasiliensis regulates genes specially related to stress and macrophages, at the same time point, up-regulate genes related to inflammation and phagocytosis, probably as an effort to counteract infection by the fungus. (c) 2007 Elsevier Masson SAS. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00275

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of our work was to show how a chosen normal-isation strategy can affect the outcome of quantitative gene expression studies. As an example, we analysed the expression of three genes known to be upregulated under hypoxic conditions: HIF1A, VEGF and SLC2A1 (GLUT1). Raw RT-qPCR data were normalised using two different strategies: a straightforward normalisation against a single reference gene, GAPDH, using the 2(-ΔΔCt) algorithm and a more complex normalisation against a normalisation factor calculated from the quantitative raw data from four previously validated reference genes. We found that the two different normalisation strategies revealed contradicting results: normalising against a validated set of reference genes revealed an upregulation of the three genes of interest in three post-mortem tissue samples (cardiac muscle, skeletal muscle and brain) under hypoxic conditions. Interestingly, we found a statistically significant difference in the relative transcript abundance of VEGF in cardiac muscle between donors who died of asphyxia versus donors who died from cardiac death. Normalisation against GAPDH alone revealed no upregulation but, in some instances, a downregulation of the genes of interest. To further analyse this discrepancy, the stability of all reference genes used were reassessed and the very low expression stability of GAPDH was found to originate from the co-regulation of this gene under hypoxic conditions. We concluded that GAPDH is not a suitable reference gene for the quantitative analysis of gene expression in hypoxia and that validation of reference genes is a crucial step for generating biologically meaningful data.