977 resultados para Pore-Scale modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rurallivelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rurallivelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,…) combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the governing equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the OECD/NEA project on Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs, several approaches and codes are being used to deal with the exercises proposed in Phase I, “Specifications and Support Data for Neutronics Cases.” At UPM, our research group treats these exercises with sensitivity calculations and the “sandwich formula” to propagate cross-section uncertainties. Two different codes are employed to calculate the sensitivity coefficients of to cross sections in criticality calculations: MCNPX-2.7e and SCALE-6.1. The former uses the Differential Operator Technique and the latter uses the Adjoint-Weighted Technique. In this paper, the main results for exercise I-2 “Lattice Physics” are presented for the criticality calculations of PWR. These criticality calculations are done for a TMI fuel assembly at four different states: HZP-Unrodded, HZP-Rodded, HFP-Unrodded, and HFP-Rodded. The results of the two different codes above are presented and compared. The comparison proves a good agreement between SCALE-6.1 and MCNPX-2.7e in uncertainty that comes from the sensitivity coefficients calculated by both codes. Differences are found when the sensitivity profiles are analysed, but they do not lead to differences in the uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separa-tion of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical sim-ulations of the mechanical behavior of composite coupons and small compo-nents are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.