379 resultados para Polypeptides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trigger factor (TF) in Escherichia coli is a molecular chaperone with remarkable properties: it has prolyl-isomerase activity, associates with nascent polypeptides on ribosomes, binds to GroEL, enhances GroEL’s affinity for unfolded proteins, and promotes degradation of certain polypeptides. Because the latter effects appeared larger at 20°C, we studied the influence of temperature on TF expression. Unlike most chaperones (e.g., GroEL), which are heat-shock proteins (hsps), TF levels increased progressively as growth temperature decreased from 42°C to 16°C and even rose in cells stored at 4°C. Upon temperature downshift from 37°C to 10°C or exposure to chloramphenicol, TF synthesis was induced, like that of many cold-shock proteins. We therefore tested if TF expression might be important for viability at low temperatures. When stored at 4°C, E. coli lose viability at exponential rates. Cells with reduced TF content die faster, while cells overexpressing TF showed greater viability. Although TF overproduction protected against cold, it reduced viability at 50°C, while TF deficiency enhanced viability at this temperature. By contrast, overproduction of GroEL/ES, or hsps generally, while protective against high temperatures, reduced viability at 4°C, which may explain why expression of hsps is suppressed in the cold. Thus, TF represents an example of an E. coli protein which protects cells against low temperatures. Moreover, the differential induction of TF at low temperatures and hsps at high temperatures appears to provide selective protection against these opposite thermal extremes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin 16 (IL-16) has been shown to function as chemoattractant factor, as a modulator of T-cell activation, and as an inhibitor of immunodeficiency virus replication. The recent identification of inconsistencies in published IL-16 cDNA nucleotide sequences led to the proposal that IL-16 is synthesized in the form of a large precursor protein (pro-IL-16). To identify the true transcriptional start of the IL-16 mRNA rapid amplification of cDNA ends methods were applied. The complete pro-IL-16 cDNA was subsequently molecularly cloned, sequenced, and expressed in COS-7 cells. We report here that pro-IL-16 is most likely synthesized as a 67-kDa protein and is encoded from a major 2.6-kb transcript. Recombinant pro-IL-16 polypeptides are specifically cleaved in lysates of CD8(+) cells, suggesting that the naturally secreted bioactive form of IL-16 is smaller than the originally published 130 amino acids fragment. Moreover, in contrast to other interleukins such as IL-15, IL-16 mRNA expression is almost exclusively limited to lymphatic tissues underlining the potential of IL-16 as an immune regulatory molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriophage λ encodes a number of genes involved in the recombinational repair of DNA double-strand breaks. The product of one of these genes, rap, has been purified. Truncated Rap proteins that copurify with the full-length form are derived, at least in part, from a ρ-dependent transcription terminator located within its coding sequence. Full-length and certain truncated Rap polypeptides bind preferentially to branched DNA substrates, including synthetic Holliday junctions and D-loops. In the presence of manganese ions, Rap acts as an endonuclease that cleaves at the branch point of Holliday and D-loop substrates. It shows no obvious sequence preference or symmetry of cleavage on a Holliday junction. The biochemical analysis of Rap gives an insight into how recombinants could be generated by the nicking of a D-loop without the formation of a classical Holliday junction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final step in glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins consists of a transamidation reaction in which preassembled GPI donors are substituted for C-terminal signal sequences in nascent polypeptides. In previous studies we described a human K562 cell mutant, termed class K, that accumulates fully assembled GPI units but is unable to transfer them to N-terminally processed proproteins. In further work we showed that, unlike wild-type microsomes, microsomes from these cells are unable to support C-terminal interaction of proproteins with the small nucleophiles hydrazine or hydroxylamine, and that the cells thus are defective in transamidation. In this study, using a modified recombinant vaccinia transient transfection system in conjunction with a composite cDNA prepared by 5′ extension of an existing GenBank sequence, we found that the genetic element affected in these cells corresponds to the human homolog of yGPI8, a gene affected in a yeast mutant strain exhibiting similar accumulation of GPI donors without transfer. hGPI8 gives rise to mRNAs of 1.6 and 1.9 kb, both encoding a protein of 395 amino acids that varies in cells with their ability to couple GPIs to proteins. The gene spans ≈25 kb of DNA on chromosome 1. Reconstitution of class K cells with hGPI8 abolishes their accumulation of GPI precursors and restores C-terminal processing of GPI-anchored proteins. Also, hGPI8 restores the ability of microsomes from the mutant cells to yield an active carbonyl in the presence of a proprotein which is considered to be an intermediate in catalysis by a transamidase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monolayer tapetum cells of the maturing flowers of Brassica napus contain abundant subcellular globuli-filled plastids and special lipid particles, both enriched with lipids that are supposed to be discharged and deposited onto the surface of adjacent maturing pollen. We separated the two organelles by flotation density gradient centrifugation and identified them by electron microscopy. The globuli-filled plastids had a morphology similar to those described in other plant species and tissues. They had an equilibrium density of 1.02 g/cm3 and contained neutral esters and unique polypeptides. The lipid particles contained patches of osmiophilic materials situated among densely packed vesicles and did not have an enclosing membrane. They exhibited osmotic properties, presumably exerted by the individual vesicles. They had an equilibrium density of 1.05 g/cm3 and possessed triacylglycerols and unique polypeptides. Several of these polypeptides were identified, by their N-terminal sequences or antibody cross-reactivity, as oleosins, proteins known to be associated with seed storage oil bodies. The morphological and biochemical characteristics of the lipid particles indicate that they are novel organelles in eukaryotes that have not been previously isolated and studied. After lysis of the tapetum cells at a late stage of floral development, only the major plastid neutral ester was recovered, whereas the other abundant lipids and proteins of the two tapetum organelles were present in fragmented forms or absent on the pollen surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polypeptides targeted to the yeast endoplasmic reticulum (ER) posttranslationally are thought to be kept in the cytoplasm in an unfolded state by Hsp70 chaperones before translocation. We show here that Escherichia coli β-lactamase associated with Hsp70, but adopted a native-like conformation before translocation in living Saccharomyces cerevisiae cells. β-Lactamase is a globular trypsin-resistant molecule in authentic form. For these studies, it was linked to the C terminus of a yeast polypeptide Hsp150Δ, which conferred posttranslational translocation and provided sites for O-glycosylation. We devised conditions to retard translocation of Hsp150Δ-β-lactamase. This enabled us to show by protease protection assays that an unglycosylated precursor was associated with the cytoplasmic surface of isolated microsomes, whereas a glycosylated form resided inside the vesicles. Both proteins were trypsin resistant and had similar β-lactamase activity and Km values for nitrocefin. The enzymatically active cytoplasmic intermediate could be chased into the ER, followed by secretion of the activity to the medium. Productive folding in the cytoplasm occurred in the absence of disulfide formation, whereas in the ER lumen, proper folding required oxidation of the sulfhydryls. This suggests that the polypeptide was refolded in the ER and consequently, at least partially unfolded for translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblasts, when plated on the extracellular matrix protein fibronectin (FN), rapidly spread and form an organized actin cytoskeleton. This process is known to involve both the central α5β1 integrin-binding and the C-terminal heparin-binding regions of FN. We found that within the heparin-binding region, the information necessary for inducing organization of stress fibers and focal contacts was located in a 29–amino acid segment of FN type III module 13 (III13). We did not find a cytoskeleton-organizing role for repeat III14, which had previously been implicated in this process. Within III13, the same five basic amino acids known to be most important for heparin binding were also necessary for actin organization. A substrate of III13 alone was only weakly adhesive but strongly induced formation of filopodia and lamellipodia. Stress fiber formation required a combination of III13 and III7–11 (which contains the integrin α5β1 recognition site), either as a single fusion protein or as separate polypeptides, and the relative amounts of the two binding sites appeared to determine whether stress fibers or filopodia and lamellipodia were the predominant actin structures formed. We propose that a balance of signals from III13 and from integrins regulates the type of actin structures assembled by the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC140) of the I1 complex. Sequence and secondary structural analysis, with particular emphasis on β-sheet organization, predicted that IC140 contains seven WD repeats. Reexamination of other members of the dynein intermediate chain family of WD proteins indicated that these polypeptides also bear seven WD/β-sheet repeats arranged in the same pattern along each intermediate chain protein. A polyclonal antibody was raised against a 53-kDa fusion protein derived from the C-terminal third of IC140. The antibody is highly specific for IC140 and does not bind to other dynein intermediate chains or proteins in Chlamydomonas flagella. Immunofluorescent microscopy of Chlamydomonas cells confirmed that IC140 is distributed along the length of both flagellar axonemes. In vitro reconstitution experiments demonstrated that the 53-kDa C-terminal fusion protein binds specifically to axonemes lacking the I1 complex. Chemical cross-linking indicated that IC140 is closely associated with a second intermediate chain in the I1 complex. These data suggest that IC140 contains domains responsible for the assembly and docking of the I1 complex to the doublet microtubule cargo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Gram-positive bacteria covalently tether their surface adhesins to the cell wall peptidoglycan. We find that surface proteins of Staphylococcus aureus are linked to the cell wall by sortase, an enzyme that cleaves polypeptides at a conserved LPXTG motif. S. aureus mutants lacking sortase fail to process and display surface proteins and are defective in the establishment of infections. Thus, the cell wall envelope of Gram-positive bacteria represents a surface organelle responsible for interactions with the host environment during the pathogenesis of bacterial infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was previously shown that coexpression of the lactose permease of Escherichia coli in two contiguous fragments leads to functional complementation. We demonstrate here that site-directed thiol crosslinking of coexpressed permease fragments can be used to determine helix proximity in situ without the necessity of purifying the permease. After coexpression of the six N-terminal (N6) and six C-terminal (C6) transmembrane helices, each with a single Cys residue, crosslinking was carried out in native membranes and assessed by the mobility of anti-C-terminal-reactive polypeptides on immunoblots. A Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 28 or 29 (helix I), but not with a Cys residue at position 27, which is on the opposite face of helix I, thereby indicating that the face of helix I containing Pro-28 and Phe-29 is close to helix VII. Similarly, a Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 52 or 53 (helix II), but not with a Cys residue at position 54. Furthermore, low-efficiency crosslinking is observed between a Cys residue at position 52 or 53 and a Cys residue at position 361 (helix XI). The results indicate that helix VII lies in close proximity to both helices I and II and that helix II is also close to helix XI. The method should be applicable to a number of different polytopic membrane proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the yeast, Saccharomyces cerevisiae, oligosaccharyl transferase (OT), which catalyzes the transfer of dolichol-linked oligosaccharide chains to nascent polypeptides in the endoplasmic reticulum, consists of nine nonidentical membrane protein subunits. Genetic and biochemical evidence indicated these nine proteins exist in three subcomplexes. Three of the OT subunits (Ost4p, Ost3p, and Stt3p) have been proposed to exist in one subcomplex. To investigate the interaction of these three membrane proteins, initially we carried out a mutational analysis of Ost4p, which is an extraordinarily small membrane protein containing only 36 amino acid residues. This analysis indicated that when single amino acid residues in a region close to the luminal face of the putative transmembrane domain of Ost4p were changed into an ionizable amino acid such as Lys or Asp, growth at 37°C and OT activity measured in vitro were impaired. In addition, using immunoprecipitation techniques and Western blot analysis, we found that with these mutations the interaction between Ost4p, Ost3p, and Stt3p was disrupted. Introduction of Lys or Asp residues at other positions in the putative transmembrane domain or at the N or C terminus of Ost4p had no effect on disrupting subunit interactions or impairing the activity of OT. These findings suggest that a localized region of the putative transmembrane domain of Ost4p mediates in stabilization of the interaction with the two other OT subunits (Ost3p and Stt3p) in a subcomplex in the endoplasmic reticulum membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In proteomic research, it is often necessary to screen a large number of polypeptides for the presence of stable structure. Described here is a technique (referred to as SUPREX, stability of unpurified proteins from rates of H/D exchange) for measuring the stability of proteins in a rapid, high-throughput fashion. The method uses hydrogen exchange to estimate the stability of microgram quantities of unpurified protein extracts by using matrix-assisted laser desorption/ionization MS. The stabilities of maltose binding protein and monomeric λ repressor variants determined by SUPREX agree well with stability data obtained from conventional CD denaturation of purified protein. The method also can detect the change in stability caused by the binding of maltose to maltose binding protein. The results demonstrate the precision of the method over a wide range of stabilities.