932 resultados para Poisson Arrivals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To identify the spatial and temporal clusters of Barmah Forest virus (BFV) disease in Queensland in Australia, using geographical information systems (GIS) and spatial scan statistic (SaTScan). Methods We obtained BFV disease cases, population and statistical local areas boundary data from Queensland Health and Australian Bureau of Statistics respectively during 1992-2008 for Queensland. A retrospective Poisson-based analysis using SaTScan software and method was conducted in order to identify both purely spatial and space-time BFV disease high-rate clusters. A spatial cluster size of a proportion of the population and a 200km circle radius and varying time windows from 1 month to 12 months were chosen (for the space-time analysis). Results The spatial scan statistic detected a most likely significant purely spatial cluster (including 23 SLAs) and a most likely significant space-time cluster (including 24 SLAs) in approximately the same location. Significant secondary clusters were also identified from both the analyses in several locations. Conclusions This study provides evidence of the existence of statistically significant BFV disease clusters in Queensland, Australia. The study also demonstrated the relevance and applicability of SaTScan in analysing on-going surveillance data to identify clusters to facilitate the development of effective BFV disease prevention and control strategies in Queensland, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Previous studies have found that high and cold temperatures increase the risk of childhood diarrhea. However, little is known about whether the within-day variation of temperature has any effect on childhood diarrhea. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear model was used to examine the relationship between diurnal temperature range and emergency department admissions for diarrhea among children under five years in Brisbane, from 1st January 2003 to 31st December 2009. Results There was a statistically significant relationship between diurnal temperature range and childhood diarrhea. The effect of diurnal temperature range on childhood diarrhea was the greatest at one day lag, with a 3% (95% confidence interval: 2%–5%) increase of emergency department admissions per 1°C increment of diurnal temperature range. Conclusion Within-day variation of temperature appeared to be a risk factor for childhood diarrhea. The incidence of childhood diarrhea may increase if climate variability increases as predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background China has one of the highest suicide rates in the world; however, the recent trends in suicide have not been adequately studied. This study aimed to examine the potential changes in the rates and characteristics in a Chinese population. Methods Data on suicide deaths in 1991–2010 were extracted from the Shandong Disease Surveillance Point (DSP) mortality dataset based on ICD-10 codes. The temporal trend in age-adjusted suicide rates for each subpopulation was tested using log-linear Poisson regression analysis. Results From 1991 to 2010, there was a marked decrease in the overall suicide rate in Shandong, with an average reduction of 8% per year. The decrease trend was stronger in rural than in urban areas and more evident in females than in males. Similar decreases were observed for all age groups. Pesticide ingestion and hanging remained the top two methods for suicide. Limitations There are likely quality concerns in the morality data, such as underreporting and misclassification, as well as low accuracy in determining the underlying causes of deaths. The representativeness of the DSP system may also be problematic due to the rapid changes in economy and demography. Conclusions Completed suicides in Shandong have sharply declined over the past 20 years. Higher rates in females versus males and in rural versus urban areas, which were previously considered to be distinguishing features of suicide in China, are becoming less pronounced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the variation in association between high temperatures and elderly mortality (age ≥ 75 years) from year to year in 83 US cities between 1987 and 2000. We used a Poisson regression model and decomposed the mortality risk for high temperatures into: a “main effect” due to high temperatures using lagged non-linear function, and an “added effect” due to consecutive high temperature days. We pooled yearly effects across both regional and national levels. The high temperature effects (both main and added effects) on elderly mortality varied greatly from year to year. In every city there was at least one year where higher temperatures were associated with lower mortality. Years with relatively high heat-related mortality were often followed by years with relatively low mortality. These year to year changes have important consequences for heat-warning systems and for predictions of heat-related mortality due to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we give an overview of some very recent work, as well as presenting a new approach, on the stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples the three regimes mentioned above. We then apply this approach to a biologically inspired problem involving the expression and activity of LacZ and LacY proteins in E coli, and conclude with a discussion on the significance of this work. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Hot and cold temperatures have been associated with childhood asthma. However, the relationship between daily temperature variation and childhood asthma is not well understood. This study aimed to examine the relationship between diurnal temperature range (DTR) and childhood asthma. METHODS: A Poisson generalized linear model combined with a distributed lag non-linear model was used to examine the relationship between DTR and emergency department admissions for childhood asthma in Brisbane, from January 1st 2003 to December 31st 2009. RESULTS: There was a statistically significant relationship between DTR and childhood asthma. The DTR effect on childhood asthma increased above a DTR of 10[degree sign]C. The effect of DTR on childhood asthma was the greatest for lag 0--9 days, with a 31% (95% confidence interval: 11% -- 58%) increase of emergency department admissions per 5[degree sign]C increment of DTR. Male children and children aged 5--9 years appeared to be more vulnerable to the DTR effect than others. CONCLUSIONS: Large DTR may trigger childhood asthma. Future measures to control and prevent childhood asthma should include taking temperature variability into account. More protective measures should be taken after a day of DTR above10[degree sign]C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Demand for pre-hospital emergency care is increasing in Australia as in many other countries. Using posthoc criteria such as triage, diagnosis and admission status, some authors view a considerable number of these as "inappropriate". Yet, calling an ambulance at the time of emergency is rarely studied from the patients’ or their carers’ perspective. This study interviewed patients about the decision, circumstances surrounding and reasons for calling an ambulance in Queensland, Australia. Methods: A cross-sectional survey of patients attending a sample of eight public hospital emergency departments in Queensland was undertaken between March and May 2011. In total, 911 questionnaires were collected (response rate: 67%), of whom 226 (24.8%) had arrived by ambulance. Results: In 35.6% of ambulance arrivals, the decision to request an ambulance was made by the patient; 25% by a doctor; 20% by a family member, friend or carer. Other callers included nurse, people at work or school, and passers-by. Reasons to request an ambulance included urgency (87%) and severity (84%) of the condition. Other reasons included requiring special care (76%), getting higher priority at the emergency department (34%), not having a car (34%), and financial concerns (17%). Decision to request an ambulance varied significantly according to the time of illness onset (e.g. on the day, week before), and location (e.g. home, outside). Conclusion: The decision to call an ambulance is made mostly by non-medical professionals in a perceived emergency situation. They call the ambulance for different reasons but mainly take into account the patient’s welfare and safety. Better understanding of these reasons will affect the direction and effectiveness of demand management strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite its potential multiple contributions to sustainable policy objectives, urban transit is generally not widely used by the public in terms of its market share compared to that of automobiles, particularly in affluent societies with low-density urban forms like Australia. Transit service providers need to attract more people to transit by improving transit quality of service. The key to cost-effective transit service improvements lies in accurate evaluation of policy proposals by taking into account their impacts on transit users. If transit providers knew what is more or less important to their customers, they could focus their efforts on optimising customer-oriented service. Policy interventions could also be specified to influence transit users’ travel decisions, with targets of customer satisfaction and broader community welfare. This significance motivates the research into the relationship between urban transit quality of service and its user perception as well as behaviour. This research focused on two dimensions of transit user’s travel behaviour: route choice and access arrival time choice. The study area chosen was a busy urban transit corridor linking Brisbane central business district (CBD) and the St. Lucia campus of The University of Queensland (UQ). This multi-system corridor provided a ‘natural experiment’ for transit users between the CBD and UQ, as they can choose between busway 109 (with grade-separate exclusive right-of-way), ordinary on-street bus 412, and linear fast ferry CityCat on the Brisbane River. The population of interest was set as the attendees to UQ, who travelled from the CBD or from a suburb via the CBD. Two waves of internet-based self-completion questionnaire surveys were conducted to collect data on sampled passengers’ perception of transit service quality and behaviour of using public transit in the study area. The first wave survey is to collect behaviour and attitude data on respondents’ daily transit usage and their direct rating of importance on factors of route-level transit quality of service. A series of statistical analyses is conducted to examine the relationships between transit users’ travel and personal characteristics and their transit usage characteristics. A factor-cluster segmentation procedure is applied to respodents’ importance ratings on service quality variables regarding transit route preference to explore users’ various perspectives to transit quality of service. Based on the perceptions of service quality collected from the second wave survey, a series of quality criteria of the transit routes under study was quantitatively measured, particularly, the travel time reliability in terms of schedule adherence. It was proved that mixed traffic conditions and peak-period effects can affect transit service reliability. Multinomial logit models of transit user’s route choice were estimated using route-level service quality perceptions collected in the second wave survey. Relative importance of service quality factors were derived from choice model’s significant parameter estimates, such as access and egress times, seat availability, and busway system. Interpretations of the parameter estimates were conducted, particularly the equivalent in-vehicle time of access and egress times, and busway in-vehicle time. Market segmentation by trip origin was applied to investigate the difference in magnitude between the parameter estimates of access and egress times. The significant costs of transfer in transit trips were highlighted. These importance ratios were applied back to quality perceptions collected as RP data to compare the satisfaction levels between the service attributes and to generate an action relevance matrix to prioritise attributes for quality improvement. An empirical study on the relationship between average passenger waiting time and transit service characteristics was performed using the service quality perceived. Passenger arrivals for services with long headways (over 15 minutes) were found to be obviously coordinated with scheduled departure times of transit vehicles in order to reduce waiting time. This drove further investigations and modelling innovations in passenger’ access arrival time choice and its relationships with transit service characteristics and average passenger waiting time. Specifically, original contributions were made in formulation of expected waiting time, analysis of the risk-aversion attitude to missing desired service run in the passengers’ access time arrivals’ choice, and extensions of the utility function specification for modelling passenger access arrival distribution, by using complicated expected utility forms and non-linear probability weighting to explicitly accommodate the risk of missing an intended service and passenger’s risk-aversion attitude. Discussions on this research’s contributions to knowledge, its limitations, and recommendations for future research are provided at the concluding section of this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives To examine the effect of extreme temperatures on emergency department admissions (EDAs) for childhood asthma. Methods An ecological design was used in this study. A Poisson linear regression model combined with a distributed lag non-linear model was used to quantify the effect of temperature on EDAs for asthma among children aged 0–14 years in Brisbane, Australia, during January 2003–December 2009, while controlling for air pollution, relative humidity, day of the week, season and long-term trends. The model residuals were checked to identify whether there was an added effect due to heat waves or cold spells. Results There were 13 324 EDAs for childhood asthma during the study period. Both hot and cold temperatures were associated with increases in EDAs for childhood asthma, and their effects both appeared to be acute. An added effect of heat waves on EDAs for childhood asthma was observed, but no added effect of cold spells was found. Male children and children aged 0–4 years were most vulnerable to heat effects, while children aged 10–14 years were most vulnerable to cold effects. Conclusions Both hot and cold temperatures seemed to affect EDAs for childhood asthma. As climate change continues, children aged 0–4 years are at particular risk for asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia has continued to benefit from the human, social and economic capital contributed by immigrant resettlement over many years. Humanitarian entrants have also made significant economic, social and civic contributions to the Australian society. Since 2000, approximately 160,000 people have entered Australia under the refugee and humanitarian resettlement program; around 15% have come from South Sudan and one third of these are adult males. In response to the 2003 evaluation of the Integrated Humanitarian Settlement Strategy (IHSS), which recommended to seek further opportunities to settle humanitarian entrants in regional Australia, the Department of Immigration and Citizenship (DIAC) has since encouraged regional settlement to “address the demand for less skilled labour in regional economies and to assist humanitarian entrants to achieve early employment”. There is evidence, however, of the many challenges faced by humanitarian arrivals living in regional areas. This chapter focuses on the educational and occupational outcomes among 117 South Sudanese adult men from refugee backgrounds. In particular, the chapter uses both cross-sectional (at first interview) and longitudinal data (four interviews with each participant at six-month intervals) to compares outcomes between men living in Brisbane and those living in the Toowoomba–Gatton region in Southeast Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol restrictions have been implemented in many Indigenous communities internationally, with the aim to reduce alcohol-related harm. Whilst a range of reviews have evaluated such restrictions using different measures, drink driving has been described in several reviews as increasing. Presently, this remains anecdotal; with limited empirical evidence to corroborate these reports. In Australia, the Queensland government introduced alcohol management plans in remote Indigenous communities, during 2002-2003, with total alcohol prohibition commencing in 2008 in some communities. Given road crashes are one of the leading causes of injuries for Indigenous peoples, this study aims to identify if the restrictions have been successful in reducing drink driving or have increased such behaviour. We examine this by reviewing changes in conviction rates and in offender and offence characteristics following the 2008 restrictions. Using de-identified Queensland court drink driving conviction data (2006-2011), from four Indigenous communities, Robust Poisson regression models compared counts of drink driving convictions pre (2006-2008) versus post SRS (2009-2011). Changes in offender characteristics and conviction details (blood alcohol concentration (BAC) and sentencing severity), were examined using chi-squares. Results indicate a decline in convictions after the 2008 SRS in three communities. However, a significant increase in convictions was identified in one study community. Community-level disparity included significant decline in BAC in one community (χ 2=5.58, p=0.02) compared with the three other communities that did not indicate change and a significant increase the number of women convicted in two communities (χ 2=17.36, p<0.01; χ 2=5.79, p=0.04). Alcohol restrictions may have important implications in road safety with these reductions in convictions and BAC in some communities. However, an increase in the number of women convicted and limited changes in BAC for other communities demonstrate the complex relationship between alcohol use, remoteness and driving. Greater focus on demand reduction strategies may be necessary to address alcohol misuse.