955 resultados para Plum Island Animal Disease Laboratory.
Resumo:
"Revised and enlarged."
Resumo:
References": p. [151]-153.
Resumo:
Type-written.
Resumo:
"References", p. 31-43.
Resumo:
Includes bibliographical references and index.
Resumo:
Shipping List Date: 05/20/97
Resumo:
"Issued July 1946."
Resumo:
Mode of access: Internet.
Resumo:
Reprint of the 1974 ed.
Resumo:
Bibliography: p. 529-534.
Resumo:
Little is known of the blood parasites of coral reef fishes and nothing of how they are transmitted. We examined 497 fishes from 22 families, 47 genera, and 78 species captured at Lizard Island, Australia, between May 1997 and April 2003 for hematozoa and ectoparasites. We also investigated whether gnathiid isopods might serve as potential vectors of fish hemogregarines. Fifty-eight of 124 fishes caught in March 2002 had larval gnathiid isopods, up to 80 per host fish, and these were identified experimentally to be of 2 types, Gnathia sp. A and Gnathia sp. B. Caligid copepods were also recorded but no leeches. Hematozoa, found in 68 teleosts, were broadly hemogregarines of 4 types and an infection resembling Haemohormidium. Mixed infections (hemogregarine with Haemohormidium) were also observed, but no trypanosomes were detected in blood films. The hemogregarines were identified as Haemogregarina balistapi n. sp., Haemogregarina tetraodontis, possibly Haemogregarina bigemina, and an intraleukocytic hemogregarine of uncertain status. Laboratory-reared Gnathia sp. A larvae, fed experimentally on bruslitail tangs, the latter heavily infected with the H. bigemina-like hemogregarine, contained hemogregarine gamonts and possibly young oocysts up to 3 days postfeeding, but no firm evidence that gnathiids transmit hemogregarines at Lizard Island was obtained.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
Coral reefs are experiencing declines worldwide and recently coral diseases have been identified as significant contributors to coral mortality. However, little is known regarding the factors that drive coral disease distributions and dynamics. Current knowledge of the organisms that cause coral diseases is also limited, with pathogens having been identified for only 5 of the 21 described coral diseases. The study presented here describes coral disease dynamics in terms of occurrence, prevalence, spatial distribution, and host species susceptibility from 2002--2004 on reefs of the Northern Florida Keys (NFK) and Lee Stocking Island (LSI) in the Bahamas' Exuma chain. In addition, this research investigated the influence of temperature, sediment, and nutrient availability on coral disease prevalence and severity. Finally, microbial communities associated with a polymicrobial disease, black band, were examined to address spatial and temporal variability. ^ Four scleractinian diseases were observed in repeated surveys conducted during June-August of each year: black band disease (BBD), white plague type 2 (WP), dark spots syndrome (DSS), and yellow band disease-(YBD). Coral disease prevalence was generally low in both the NFK and LSI as compared to epizootic levels reported previously in the NFK and other regions of the Caribbean. Disease prevalence and species susceptibility varied spatially and temporally. Massive framework species, including Siderastrea siderea, Colpophyllia natans, and Montastraea annularis, along with relatively smaller colonies of Meandrina meandrites and Dichocoenia stokesi, were most susceptible to disease. Temperature, sedimentation, and dissolved inorganic nitrogen were positively correlated with BBD infections. Furthermore, experimental nutrient enrichment exacerbated coral tissue loss to BBD both in situ and in vivo. Profiling of BBD microbial communities using length heterogeneity PCR revealed variation over space and time, with significantly distinct bacterial assemblages in the NFK, LSI, and US Virgin Islands. ^ This study contributes to knowledge of the relationship between coral diseases and the environment, and facilitates predictions regarding potential changes in coral reef communities under differing environmental conditions. Additionally, this research provides further understanding of coral disease dynamics at both the host and microbial pathogen levels.^