919 resultados para Plasmodium vivax malaria
Resumo:
This study describes the epidemiological profile of malaria in the State of Tocantins, in the period 2003-2008, investigates the association between the frequency of malaria and population growth, classifies the cases by 'autochthonous' and 'imported', reports the indices of the disease and analyses the distribution of the cases by Plasmodium species, age and gender. The retrospective study was based on secondary data, stored in SIVEP-malaria and analyzed using the software Epi-Info 3.5.1. and Bioestat 5.0. 19,004 samples were investigated for malaria, 19% of them were positive, 73.32% with Plasmodium vivax, 21.80% with Plasmodium falciparum, 4.79% with mixed infections and only 0.08% with Plasmodium malariae. Male individuals accounted for 76.95% and predominated in all years and age groups, especially in the 15 to 49 years old group. From the overall cases, 34.27% were autochthonous and 65.73% were imported (χ2 = 356.8, p = 0.0001). The frequency of malaria decreased significantly during the entire series (rp = 0.96, p = 0.002) and the number of municipalities with autochthonous transmission also diminished. It was found that malaria is predominantly imported, related to land activities, which confirms the need for effective measures to maintain vigilance throughout the state and enhance educational activities in order to guide the population towards early treatment-seeking.
Resumo:
Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.
Resumo:
A malaria survey was conducted in an area of high transmission (Costa Marques, Rondonia, Brazil) to determine the prevalence of asymptomatic parasitemia and its clinical significance. Most of the people surveyed were immigrants who had lived in the endemic area < 5 years. The people had easy access to free diagnostic and treatment services at the Malaria Clinic in the town of Costa Marques. The prevalence of plasmodial parasitemia in 344 people was 22%. There were 36 individuals with asymptomatic infections among the 77 parasitemic patients. During the two days following the initial examination, 19 ofthe 36 individuals: with asymptomatic infections developed malaria. Among the 17 patients who remained asymptomatic for > 2 days, 4 had only gametocytes, 1 had taken inadequate anti-malarial treatment, 3 were under treatment and 2 moved. Six asymptomatic patients denied the use of anti-malarial drugs and they developed malaria 3-6 days after the initial parasitological diagnosis. The final patient remained asymptomatic during the 7 day observation period. He had a history of > 40 malaria attacks and denied the use of antimalarial treatment. With the exception of the latter all of the other asymptomatic patients, were either in the incubation period or had been treated It is concluded that asymptomatic malaria is rare in the Costa Marques area and that it is necessary to treat all individuals with plasmodial parasitemia.
Resumo:
RESUMO: A Malária é causada por parasitas do género Plasmodium, sendo a doença parasitária mais fatal para o ser humano. Apesar de, durante o século passado, o desenvolvimento económico e a implementação de diversas medidas de controlo, tenham permitido erradicar a doença em muitos países, a Malária continua a ser um problema de saúde grave, em particular nos países em desenvolvimento. A Malária é transmitida através da picada de uma fêmea de mosquito do género Anopheles. Durante a picada, os esporozoítos são injetados na pele do hospedeiro, seguindo-se a fase hepática e obrigatória do ciclo de vida. No fígado, os esporozoítos infetam os hepatócitos onde se replicam, dentro de um vacúolo parasitário (VP) e de uma forma imunitária silenciosa, em centenas de merozoitos. Estas novas formas do parasita são as responsáveis por infetar os eritrócitos, iniciando a fase sanguínea da doença, onde se os primeiros sintomas se manifestam, tais como a característica febre cíclica. A fase hepática da doença é a menos estudada e compreendida. Mais ainda, as interações entre o VP e os organelos da células hospedeira estão ainda pouco caracterizados. Assim, neste estudo, as interações entre os organelos endocíticos e autofágicos da célula hospedeira e o VP foram dissecados, observando-se que os anfisomas, que são organelos resultantes da intersecção do dois processos de tráfego intracelular, interagem com o parasita. Descobrimos que a autofagia tem também uma importante função imunitária durante a fase hepática inicial, ao passo, que durante o desenvolvimento do parasita, já numa fase mais tardia, o parasita depende da interação com os endossomas tardios e anfisomas para crescer. Vesiculas de BSA, EGF e LC3, foram, também, observadas dentro do VP, sugerindo que os parasitas são capazes de internalizar material endocítico e autofágico do hospedeiro. Mais ainda, mostramos que esta interação depende da cinase PIKfyve, responsável pela conversão do fosfoinositidio-3-fosfato no fosfoinositidio-3,5-bifosfato, uma vez que inibindo esta cinase o parasita não é capaz de crescer normalmente. Finalmente, mostramos que a proteína TRPML1, uma proteína efetora do fosfoinositidio-3,5-bifosfato, e envolvida no processo de fusão das membranas dos organelos endocíticos e autofágicos, também é necessária para o crescimento do parasita. Desta forma, o nosso estudo sugere que a membrana do VP funde com vesiculas endocíticas e autofágicas tardias, de uma forma dependente do fositidio-3,5-bifosfato e do seu effetor TRPML1, permitindo a troca de material com a célula hospedeira. Concluindo, os nossos resultados evidenciam que o processo autofágico que ocorre na célula hospedeira tem um papel duplo durante a fase hepática da malaria. Enquanto numa fase inicial os hepatócitos usam o processo autofágico como forma de defesa contra o parasita, já durante a fase de replicação o VP funde com vesiculas autofágicas e endocíticas de forma a obter os nutrientes necessários ao seu desenvolvimento.--------- ABSTRACT: Malaria, which is caused by parasites of the genus Plasmodium, is the most deadly parasitic infection in humans. Although economic development and the implementation of control measures during the last century have erradicated the disease from many areas of the world, it remains a serious human health issue, particularly in developing countries. Malaria is transmitted by female mosquitoes of the genus Anopheles. During the mosquito blood meal, Plasmodium spp. sporozoites are injected into the skin dermis of the vertebrate host, followed by an obligatory liver stage. Upon entering the liver, Plasmodium parasites infect hepatocytes and silently replicate inside a host cell-derived parasitophorous vacuole (PV) into thousands of merozoites. These new parasite forms can infect red blood cells initiating the the blood stage of the disease which shows the characteristic febrile malaria episodes. The liver stage is the least characterized step of the malaria infection. Moreover, the interactions between the Plasmodium spp. PV and the host cell trafficking pathways are poorly understood. We dissected the interaction between Plasmodium parasites and the host cell endocytic and autophagic pathways and we found that both pathways intersect and interconnect in the close vicinity of the parasite PV, where amphisomes are formed and accumulate. Interestingly, we observed a clearance function for autophagy in hepatocytes infected with Plasmodium berghei parasites at early infection times, whereas during late liver stage development late endosomes and amphisomes are required for parasite growth. Moreover, we found the presence of internalized BSA, EGF and LC3 inside parasite vacuoles, suggesting that the parasites uptake endocytic and autophagic cargo. Furthermore, we showed that the interaction between the PV and host traffic pathways is dependent on the kinase PIKfyve, which converts the phosphoinositide PI(3)P into PI(3,5)P2, since PIKfyve inhibition caused a reduction in parasite growth. Finally, we showed that the PI(3,5)P2 effector protein TRPML1, which is involved in late endocytic and autophagic membrane fusion, is also required for parasite development. Thus, our studies suggest that the parasite parasitophorous vacuole membrane (PVM) is able to fuse with late endocytic and autophagic vesicles in a PI(3,5)P2- and TRPML1-dependent manner, allowing the exchange of material between the host cell and the parasites, necessary for the rapid development of the latter that is seen during the liver stage of infection. In conclusion, we present evidence supporting a specific and essential dual role of host autophagy during the course of Plasmodium liver infection. Whereas in the initial hours of infection the host cell uses autophagy as a cell survival mechanism to fight the infection, during the replicative phase the PV fuses with host autophagic and endocytic vesicles to obtain nutrients required for parasite growth.
Resumo:
Malaria causes important functional alterations of the immune system, but several of them are poorly defined. To evaluate thoroughly the natural killer cell cytotoxicity in patients with malaria, we developed a technique capable to assess both the dynamics and the kinetics of the process. For the kinetics assay, human peripheral blood mononuclear cells were previously incubated with K562 cells and kept in agarose medium, while for the dynamics assay both cells were maintained in suspension. NK activity from patients with vivax malaria presented a kinetics profile faster than those with falciparum malaria. NK cytotoxicity positively correlated with parasitemia in falciparum malaria. The dynamics of NK cytotoxicity of healthy individuals was elevated at the beginning of the process and then significantly decreased. In contrast, malaria patients presented successive peaks of NK activity. Our results confirmed the occurrence of alteration in NK cell function during malaria, and added new data about the NK cytotoxicity process.
Resumo:
In March 2005, a resident of the municipality of Monte Alegre de Minas, State of Minas Gerais, without any history of traveling to endemic areas for malaria, was diagnosed with Plasmodium vivax infection and local mosquito-borne transmission was suspected. The epidemiological investigation identified another 10 cases with local transmission and all of them were related to the imported malaria case that was detected in this region. The potential exposure site was the banks of the river Tejuco, an area frequented by mineral prospectors. Some of these prospectors were known to have come from states with malaria transmission. In the autochthonous cases, Plasmodium vivax and Plasmodium falciparum were diagnosed. Entomological investigation identified Anopheles (Nyssorhynchus) darlingi, Anopheles (Nyssorhynchus) albitarsis, Anopheles (Nyssorhynchus) triannulatus and Anopheles (Nyssorhynchus) parvus. After the first outbreak, another three autochthonous cases were notified in municipality of Monte Alegre de Minas, in the same year. The occurrence of these outbreaks highlights the importance of surveillance systems in areas that are nonendemic for malaria.
Resumo:
INTRODUCTION: The Amazon region has extensive forested areas and natural ecosystems, providing favorable conditions for the existence of innumerous arboviruses. Over 200 arboviruses have been isolated in Brazil and about 40 are associated with human disease. Four out of 40 are considered to be of public health importance in Brazil: Dengue viruses (1-4), Oropouche, Mayaro and Yellow Fever. Along with these viruses, about 98% of the malaria cases are restricted to the Legal Amazon region. METHODS: This study aimed to investigate the presence of arboviruses in 111 clinical serum samples from patients living in Novo Repartimento (Pará), Plácido de Castro (Acre), Porto Velho (Rondônia) and Oiapoque (Amapá). The viral RNA was extracted and RT-PCR was performed followed by a Multiplex-Nested-PCR, using Flavivirus, Alphavirus and Orthobunyavirus generic and species-specific primers. RESULTS: Dengue virus serotype 2 was detected in two patients living in Novo Repartimento (Pará) that also presented active Plasmodium vivax infection. CONCLUSIONS: Despite scant data, this situation is likely to occur more frequently than detected in the Amazon region. Finally, it is important to remember that both diseases have similar clinical findings, thus the diagnosis could be made concomitantly for dengue and malaria in patients living or returning from areas where both diseases are endemic or during dengue outbreaks.
Resumo:
ABSTRACTINTRODUCTION:This study aimed to evaluate basic sanitation and socioeconomic indicators, reported cases of malaria, and risk of contracting malaria in the Ananindeua municipality, State of Pará.METHODS:Data on basic sanitation and socioeconomic dimensions were taken from the Brazilian Institute of Geography and Statistics [ Instituto Brasileiro de Geografia e Estatística (IBGE)] 2010 census. Epidemiological malaria information was taken from the Epidemiological Malaria Surveillance Information System [ Sistema de Informação de Vigilância Epidemiológica de Malária (SIVEP/Malaria)], between 2003 and 2013 of the Ministry of Health and from the SIVEP/Malaria forms of the municipality's Endemic Diseases Unit for 2,013 cases.RESULTS:Our data do not confirm the correlation among indicators of basic sanitation, socioeconomic conditions, and water supply with malaria cases. Of the 1,557 cases evaluated, most were caused by Plasmodium vivax , with rare cases of Plasmodium falciparum and mixed infections. There were 756 notifications in 2003. The number of reported cases was sharply reduced between 2006 and 2012, but a 142-case outbreak occurred in 2013. Ananindeua municipality's Annual Parasite Index indicated low risk in 2003 and no risk in other years, and the 2,013 cases were predominantly male individuals aged ≥40 years.CONCLUSIONS:Our data confirm the non-endemicity of malaria in the Ananindeua municipality, as the Annual Parasite Indices described for the years 2004-2013 classify it as a risk-free area. However, the 2013 outbreak indicates the need to strengthen prevention, surveillance, and control activities to reduce the risk of new outbreaks and consequent economic and social impacts on the population.
Resumo:
Epidemiological studies were conducted on malaria in three rural areas of the Amazon basin in the State of Rondônia: the town of Costa Marques, Forte Príncipe da Beira (Fort), and an immigrant settlement in the nearby forest. These studies were instituted to document the malaria problem and to describe the role of immigration on its distribution and prevalence. Hospital records in the town show that the number of malaria cases increased five fold from 1983 to 1987 and that the predominant malaria parasite changel from Plasmodium vivax to P. falciparum. Increased malaria followed increased immigration and colonization of the forest. A series of epidemiologic studies suggested the linkage between malaria and immigration as the prevalence of malaria was 1-2% at the Fort, a stable community, 8-9% at Costa Marques, a growing community, and 14-26% in the new settlements in the forest.
Resumo:
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Resumo:
Relative to their pre-engorgement weights, nulliparous Anopheles nuneztovari consumed significantly smaller blood meals than A. marajoara, A. triannulatus or A. aquasalis. When females were deprived of sugar before blood feeding, only one-quarter of A. nuneztovari, but more than two-thirds of A. marajoara, A. triannulatus and A. aquasalis matured eggs. Sugar feeding before blood, or two sucessive blood meals by sugar-deprived females, increased the proportion of nulliparous a. nuneztovari which developed eggs, but not significantly so. Nearly all individuals of nulliparous, sugar-fed A. marajoara, A. triannulatus and A. aquasalis matured eggs after one blood feeding. Among A. nuneztovari, A. marajoara and A. aquasalis that matured some eggs in the laboratory, there were no positive correlations between the number of eggs developed and relative vlood mealsize. However, blood meals larger than the mean size significantly increased the chance that A. nuneztovari would develop some eggs. Mean fecundities of gravid A. nuneztovari and A. marajoara reared in the laboratory were significantly lower than those of the same species captured at human bait in nature. Post-engorgement access to sugar by A. nuneztovari (captured at human bait) did not influence fecundity, but significantly enhanced survivorship and the proporticon of individuals which retained eggs. Release-recapture experiments revealed that relatively small blood meals are typical of A. nuneztovari only during the first gonotrophic cycle. We suggest that multiple blood feeding, seemingly necessary for most A. nuneztovari to develop a first clutch of eggs, may increase the probability of infection with Plasmodium vivax where this mosquito species is a primary vector.
Resumo:
The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1) in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900) and P. vivax malaria (13,000 ñ 3,300), as compared to that of healthy individuals (27,000 ñ 3,000). Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.
Resumo:
World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral), methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.
Resumo:
The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA) using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein) demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.