968 resultados para Plant Communities


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large parts of the eastern half of the Tibetan Plateau are covered between (3,500) 4,000 and nearly 6,000 m a.s.l. by alpine sedge mats (key species Kobresia pygmea), which attain an extension of ca. 450,000 km**2. It is considered to be the world's largest alpine ecosystem. Moreover, there exist isolated (relic) forests in the same area up to an altitude of 4,700 m a.s.l. mainly consisting of juniper (Juniperus) and spruce (Picea). Large parts of the Kobresia ecosystem are expected to be a grazing-resistant replacement formation, replacing forests and grass-dominated plant communities due to human and/or climatic impact. Recently, a research project was launched to increase knowledge about the properties and genesis of these forests and sedge mats (Present-day dynamics and Holocene landscape history of fragmented forest biocoenoses in Tibet; headed by G. Miehe, Marburg).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"April 1976."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliographical references (p. 11).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Celtis sinensis is an introduced plant species to the southeastern region of Queensland that has had a destructive affect on indigenous plant Communities and its pollen has been identified as an allergen Source. Pollen belonging to C. sinensis was sampled during a 5-year (June 1994-May 1999) atmospheric pollen-monitoring programme in Brisbane, Australia, using a Burkard 7-day spore trap. The seasonal incidence of airborne C. sinensis pollen (CsP) in Brisbane occurred over a brief period each year during spring (August-September), while peak concentrations were restricted to the beginning of September. individual CsP seasons were heterogeneous with daily counts within the range 1-10 grains m(-3) on no more than 60 sampling days; however, smaller airborne concentrations of CsP were recorded out of each season. Correlation co-efficients were significant each year for temperature (p0.05) and relative humidity (p>0.05). A significant relationship (r(2)=0.81, p=0.036) was established between the total CsP count and pre-seasonal average maximum temperature; however, periods of precipitation (>2mm) were demonstrated to significantly lower the daily concentrations of CsP from the atmosphere. Given the environmental and clinical significance of CsP and its prevalence in the atmosphere of Brisbane, a Clinical population-based Study is required to further understand the pollen's importance as a seasonal sensitizing source in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fires are integral to the healthy functioning of most ecosystems and are often poorly understood in policy and management, however, the relationship between floristic composition and habitat structure is intrinsically linked, particularly after fire. The aim of this study was to test whether the variability of habitat structure or floristic composition and abundance in forests at a regional scale can be explained in terms of fire frequency using historical data and experimental prescribed burns. We tested this hypothesis in open eucalypt forests of Fraser Island off the east coast of Australia. Fraser Island dunes show progressive stages in plant succession as access to nutrients decreases across the Island. We found that fire frequency was not a good predictor of floristic composition or abundance across dune systems; rather, its affects were dune specific. In contrast, habitat structure was strongly influenced by fire frequency, independent of dune system. A dense understorey occurred in frequently burnt areas, whereas infrequently burnt areas had a more even distribution of plant heights. Plant communities returned to pre-burn levels of composition and abundances within 6 months of a fire and frequently burnt areas were dominated by early successional species of plant. These ecosystems were characterized by low diversity and frequently burnt areas on the east coast were dominated by Pteridium. Greater midstorey canopy cover in low frequency areas reduces light penetration and allows other species to compete more effectively with Pteridium. Our results strongly indicate that frequent fires on the Island have resulted in a decrease in relative diversity through dominance of several species. Prescribed fire represents a powerful management tool to shape habitat structure and complexity of Fraser Island forests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subantarctic Macquarie Island has substantial areas of feldmark on its plateau above 200 m altitude. Samples of the substrate (5.5 cm in depth) from bare areas of feldmark contained viable propagules of bryophyte species found at adjacent and distant sites on the island. In laboratory conditions propagules of 15 bryophyte taxa germinated, allowing interpretation of reasons for bare patches in feldmark: bryophytes were successful at colonizing stable ground but when surface movement was present, burial and/or damage of propagules and young plants prevented colonization. Spherical moss polsters found in cryoturbatic areas in feldmark, however, represent a growth form that can tolerate surface movement. A conceptual model illustrating processes associated with colonization dynamics of bryophytes on feldmark terraces is presented. Ten of the 15 germinated taxa were nonlocal taxa which currently grow in plant communities at lower and hence warmer altitudes on Macquarie Island. The presence of viable propagules of these taxa provide an immediate and constant potential for dramatic vegetation change with climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rich material of Heteroptera extracted with Berlese funnels by Dr. I. Loksa between 1953–1974 in Hungary, has been examined. Altogether 157 true bug species have been identified. The ground-living heteropteran assemblages collected in different plant communities, substrata, phytogeographical provinces and seasons have been compared with multivariate methods. Because of the unequal number of samples, the objects have been standardized with stochastic simulation. There are several true bug species, which have been collected in almost all of the plant communities. However, characteristic ground-living heteropteran assemblages have been found in numerous Hungarian plant community types. Leaf litter and debris seem to have characteristic bug assemblages. Some differences have also been recognised between the bug fauna of mosses growing on different surfaces. Most of the species have been found in all of the great phytogeographical provinces of Hungary. Most high-dominance species, which have been collected, can be found at the ground-level almost throughout the year. Specimens of many other species have been collected with Berlese funnels in spring, autumn and/or winter. The diversities of the ground-living heteropteran assemblages of the examined objects have also been compared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a third part of a series of papers on the ground-living true bugs of Hungary, the species belonging to the lace bug genus Acalypta Westwood, 1840 (Insecta: Heteroptera: Tingidae) were studied. Extensive materials collected with Berlese funnels during about 20 years all over Hungary were identified. Based on these sporadic data of many years, faunistic notes are given on some Hungarian species. The seasonal occurrence of the species are discussed. The numbers of specimens of different Acalypta species collected in diverse plant communities are compared with multivariate methods. Materials collected with pitfall traps between 1979–1982 at Bugac, Kiskunság National Park were also processed. In this area, only A. marginata and A. gracilis occurred, both in great number. The temporal changes of the populations are discussed. Significant differences could be observed between the microhabitat distribution of the two species: both species occurred in very low number in traps placed out in patches colonized by dune-slack purple moorgrass meadow; Acalypta gracilis preferred distinctly the Pannonic dune open grassland patches; A. marginata occurred in almost equal number in Pannonic dune open grassland and in Pannonic sand puszta patches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We asked if the genetic diversity of Saponaria bellidifolia (a habitat specialist plant) and the species diversity of its habitat are driven by parallel landscape level processes in an island-like system of limestone outcrops in the Carpathian Mountains. We tested the relationship of these two diversity levels at local and regional geographic scales. Local genetic and species diversity showed parallel patterns influenced by the number of plant communities. Likewise, at regional level there was strong evidence for parallel equilibrial dynamics of genotypes and species. However, a superimposed matrix effect enhanced the regional species diversity only. Genetic diversity of habitat specialist organisms and species diversity of these limestone outcrop islands on mainland are modulated by parallel landscape-level processes at different geographic scales, and mechanisms may be identified at very high spatial resolutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differentiation of limiting nutrients within small spatial scales has been observed in coastal mangrove forests, but research on other tropical peatlands suggests it is a more widespread phenomenon. In the Changuinola mire of coastal Panama, oligotrophy was hypothesized to increase along a gradient of peat development (peat doming). Nutrient and carbon concentration of leaf tissue, soil, and soil porewater were characterised over a successive sequence of plant communities along the gradient. Soil phosphorus (P) and nitrogen (N) concentrations decreased from 1200 μg P g−1 and 27 mg N g−1 to 377 μg P g−1 and 22 mg N g−1 within 2.7 km into the mire interior. These changes coincided with an increase in soil and average leaf N:P molar ratios from 52–128 and 24–41, respectively. Soil P was strongly related to leaf P and soil N:P to foliar N:P. There was a wide range in δ15N values for canopy (4.0 to −9.4‰), Campnosperma panamense (4.0 to −7.8‰) and understorey (4.8 to −3.1‰) species. Foliar δ15N values of canopy species were strongly related to soil N:P, soil P and leaf P. The depleted foliar δ15N values appeared to be an effect of both the N atmospheric source and P limitation. Here, P limitation is likely associated with ombrotrophic conditions that developed as hydrologic inputs became dominated by precipitation.