486 resultados para Planets.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a previous paper, the current state of knowledge of the region containing the Phocaea dynamical family was revised. Here, the dynamical evolution and possible origin of the Phocaea dynamical family and asteroid groups in the region are investigated. First, I study the case of asteroids at high eccentricity (e > 0.31). I find that these objects are unstable because of encounters with Mars on time-scales of up to 270 Myr. The minimum time needed by members of the Phocaea classical family to reach the orbital locations of these objects, 370 Myr, can be used to set a lower limit on the age of the Phocaea family.Next, attention is focused on the chaotic layer previously identified near the nu(6) secular resonance border. Using analytical and numerical tools, I find that the presence of the nu(6) secular resonance forces asteroids with vertical bar g-g(6)vertical bar < 2.55 arcsec yr(-1) to reach eccentricities high enough to allow them to experience deep, close encounters with Mars. Results of the analytical model of Yoshikawa and of my numerical simulations fully explain the low-inclination chaotic region found by Carruba.Finally, I investigate the long-term stability of the minor families and clumps identified in the previous paper, with particular emphasis on a clump only identifiable in the domain of proper frequencies (n, g, g - s) around (6246) Komurotoru. I find that while the clumps identified in the space of proper elements quickly disperse when the Yarkovsky effect is considered, the family around (19536) is still observable for time-scales of more than 50 Myr. The (6246) clump, characterized by its interaction with the nu(5) + nu(16) and 2 nu(6) - nu(16) secular resonances, is robust on time-scales of 50 Myr. I confirm that this group may be the first clump ever detected in the frequency domain that can be associated with a real collisional event.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation
Resumo:
In the present work, we have analyzed the behavior of the chromospheric activity of stars with planets, as a function of different planetary parameters, searching for possible effects of planets on the chromosphere of the hosting star. For this study we have selected a sample of 73 main sequence stars with planets, of spectral types F, G and K. Our analysis shows that among stars with planets presenting semi-major axis smaller than 0.15 AU, a few ones present enhanced CaII emission flux, paralleling recent results found in the literature for coronal X-ray flux. Nevertheless, in contrast to Kashyap et al. (2008), who claim that enhanced X-ray flux in stars with planets is associated to massive close-in planetary companions, we suggest that such an aspect, at least in the context of CaII emission flux, is rather an effect of stellar sample selection. We have also studied the behavior of the CaII emission as a function of orbital parameters such as orbital period and eccentricity, and no clear trend was found, reinforcing our present suggestion that enhanced chromospheric activity in stars with planets is an intrinsic stellar phenomenon
Resumo:
In the present study we compute the atmospheric parameters (Teff , log g and vmic, [Fe/H]) and chemical abundance of 16 ions (Fe I, Fe II, O I, Si I, Na I, Mg I, Al I, Ca I, Ti I, Co I, Ni I, Rb I, Zr I, Ba II, La II and Cr I) for 16 solar-like stars with masses between 0:8 and 1:2 Mfi aproximatedly, including 10 planet-host stars detected by the CoRoT Space Mission. For this study, we use data from the ESO public archive: (i) high resolution spectra (R 47000) from the UVES spectrograph on the VLT/UT2-ESO (for 7 stars, covering the wavelength range 3450-4515 Å and 5500-9400 Å) and (ii) high resolution spectra from HARPS spectrograph on the La Silla-ESO 3.60 m telescope (for 9 stars, covering the wavelength range 4200-6865 Å). Our spectral analysis is based on MARCS models of atmosphere and Turbospectrum spectroscopic tools. On the base of the computed parameters, the referred abundances appears to follow the same behavior of the solar curve abundances. Further, one observes a signifficant correlation between the abundance ratio [m/Fe] and condensation temperature (Tc) of refractory elements (Tc > 900 K). The behavior of the projected rotational velocity (v sin i) versus the computed abundances [m/Fe] is also analyzed, presenting no clear trends. This study oers additional constraints to trace the evolutive history of solar-like stars with planets, including the search for chemical dierences between stars with and without transit planets and anomalies in the studied abundances
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A probable capture of Phobos into an interesting resonance was presented in our previous work. With a simple model, considering Mars in a Keplerian and circular orbit, it was shown that once captured in the resonance, the inclination of the satellite reaches very high values. Here, the integrations are extended to much longer times and escape situations are analyzed. These escapes are due to the interaction of new additional resonances, which appear as the inclination starts to increase reaching some specific values. Compared to classical capture in mean motion resonances, we see some interesting differences in this problem. We also include the effect of Mars' eccentricity in the process of the capture. The role played by this eccentricity becomes important, particularly when Phobos encounters a double resonance at a approximate to 2.619R(M). Planetary perturbations acting on Mars and variation of its equator are also included. In general, some possible scenarios of the future of Phobos are presented.
Resumo:
We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.