994 resultados para Pigments.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton taxonomic pigments and primary production were measured at the JGOFS-France time-series station DYFAMED in the northwestern Mediterranean Sea during May 1995 to investigate changes in phytoplankton composition and the biogeochemical implications (DYNAPROC experiment). The study period covered the transitional situation from late spring bloom to pre-oligotrophic. The late spring bloom situation, occurring at the beginning of the study, revealed high chlorophyll a concentrations (maximum 3 mg/m**3 at 30 m) and high primary production (maximum 497 mg C/m**2/ 14 h). At the end of the experiment, the trophic regime shifted towards pre-oligotrophic and was characterized by lower chlorophyll a concentrations (<1 mg/m**3), although primary production still remained high (659 mg C/m**2/ 14 h). At termination of the spring bloom, the phytoplankton community was composed of chromophyte nanoflagellates (38±4%), diatoms (29±2%), cryptophytes (12±1%) and cyanobacteria (8±1%). During the transition to the pre-oligotrophic period, the contribution of small cells increased (e.g. cyanobacteria 18±2%, green flagellates 5±1%). Vertical profiles of pigments revealed a partition of the phytoplankton groups: cyanobacteria were most abundant in the surface layer, nanoflagellates containing 19'-HF+19'BF at the depth of chlorophyll maximum, whereas diatoms were located below the chlorophyll maximum. At termination of the spring bloom, a wind event induced vertical transport of nutrients into the euphotic layer. Phytoplankton groups responded differently to the event: initially, diatom concentrations increased (for 24 h) then rapidly decreased. In contrast, all others groups decreased just after the event. The long-term effect was a decrease of biomass of dominant groups (diatoms and chromophyte nanoflagellates), which accelerated the community succession and hence contributed to the oligotrophic transition.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September-October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5x10**13, 1.3x10**11 and 1.5x10**11 cells/m**2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g/m**2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2x10**13, 6.2x10**11 and 5.1x10**11 cells/m**2, respectively. The integrated biomass was 1.9 g C/m**2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg/m**2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg/m**2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.