813 resultados para Photography, Flash-light
Resumo:
Aquest Projecte pretén crear un simulador d’una màquina algorísmica, de caràcter didàctic amb Adobe Flash CS3 per a reproduir-lo amb Adobe Flash Lite Player, que és la versió per a dispositius mòbils. Simularà el comportament de la màquina algorísmica anomenada FEMTOPROC, que és capaç d’interpretar 4 instruccions molt senzilles: ADD, AND, NOT i JZ (jump if zero). Les diferents instruccions introduïdes que compondran un programa seran emmagatzemades en una memòria de 64 posicions de 8 bits cadascuna i hi haurà un Banc de Registres amb 8 registres de 8 bits, que es podrà inicialitzar al començament de la simulació.
Resumo:
Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.
Resumo:
In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.
Resumo:
All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constitutively photomorphogenic 1) regulates the stability of several light-signaling components. HFR1 (long hypocotyl in far-red light) is a putative transcription factor with a bHLH domain acting downstream of both phyA and the cryptochromes. HFR1 is closely related to PIF1, PIF3, and PIF4 (phytochrome interacting factor 1, 3 and 4), but in contrast to the latter three, there is no evidence for a direct interaction between HFR1 and the phytochromes. Here, we show that the protein abundance of HFR1 is tightly controlled by light. HFR1 is an unstable phosphoprotein, particularly in the dark. The proteasome and COP1 are required in vivo to degrade phosphorylated HFR1. In addition, HFR1 can interact with COP1, consistent with the idea of COP1 directly mediating HFR1 degradation. We identify a domain, conserved among several bHLH class proteins involved in light signaling , as a determinant of HFR1 stability. Our physiological experiments indicate that the control of HFR1 protein abundance is important for a normal de-etiolation response.
Resumo:
PURPOSE: We characterized the pupil responses that reflect rod, cone, and melanopsin function in a genetically homogeneous cohort of patients with autosomal dominant retinitis pigmentosa (adRP). METHODS: Nine patients with Gly56Arg mutation of the NR2E3 gene and 12 control subjects were studied. Pupil and subjective visual responses to red and blue light flashes over a 7 log-unit range of intensities were recorded under dark and light adaptation. The pupil responses were plotted against stimulus intensity to obtain red-light and blue-light response curves. RESULTS: In the dark-adapted blue-light stimulus condition, patients showed significantly higher threshold intensities for visual perception and for a pupil response compared to controls (P = 0.02 and P = 0.006, respectively). The rod-dependent, blue-light pupil responses decreased with disease progression. In contrast, the cone-dependent pupil responses (light-adapted red-light stimulus condition) did not differ between patients and controls. The difference in the retinal sensitivity to blue and red stimuli was the most sensitive parameter to detect photoreceptor dysfunction. Unexpectedly, the melanopsin-mediated pupil response was decreased in patients (P = 0.02). CONCLUSIONS: Pupil responses of patients with NR2E3-associated adRP demonstrated reduced retinal sensitivity to dim blue light under dark adaptation, presumably reflecting decreased rod function. Rod-dependent pupil responses were quantifiable in all patients, including those with non-recordable scotopic electroretinogram, and correlated with the extent of clinical disease. Thus, the chromatic pupil light reflex can be used to monitor photoreceptor degeneration over a larger range of disease progression compared to standard electrophysiology.
Resumo:
ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.
Resumo:
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.
Resumo:
The simple eyes (ocelli) of recently emerged adult Triatoma infestans exhibit a narrow elongated "pupil", surrounded by a ring of brown-reddish pigment, the "iris". This pupil does not respond to changes in the illumination, but varies in size after the imaginal ecdysis. This change corresponds, internally, with the growth of the corneal lens and the associated retina up to an age of about 20 days. This has not been previously observed in an insect. The use of this characteristic for recognising young adults of this species is suggested.
Resumo:
Purpose:In the retina, the balance between pro- and anti-angiogenic factors is critical for angiogenesis control but is also involved in cell survival and maintenance. For instance, the anti-angiogenic factor PEDF is neuroprotective for photoreceptors (PRs) in models of retinal degeneration. We previously reported upregulation of VEGF (24h to 48h post lesion) in the light-damage (LD) model. Furthermore, systemic delivery of PEDF, as well as lentiviral gene transfer of an anti-VEGF antibody rescue PRs from cell death. Studies in vitro show that VEGF induces retinal endothelial cells apoptosis via the alteration of the Akt1/p38 MAPK signalling pathway under hypoxic conditions. Thus, in this study, we investigate the effect of high levels of VEGF on retinal pigmented epithelium (RPE) permeability and molecular targets expression after light-induced PR degeneration. Methods:To characterize the action of VEGF in the retina during the course of LD, we exposed adult Balb/c mice to 5'000 lux for 1h, and we collected neural retinas and eye-cups (containing RPE) at different time points after the LD. We analysed protein expression by Elisa and Western blotting. In order to study RPE cell permeability after the LD we stained β-catenin on flat mounted RPE. Results:In the neural retina, preliminary results indicate that high levels of VEGF induce a significant upregulation of VEGF receptor 2, whereas VEGF receptor 1 expression is decreased. Concomitantly with VEGF upregulation, LD increases the Src phosphorylation between 24h to 48h. Furthermore, we observe that β-catenin translocates to the cytoplasm of RPE cells between 24h to 36h after the lesion, indicating an increase on the RPE permeability, which could contribute indirectly to the deleterious effect of VEGF observed during light-induced PR apoptosis. Conclusions:This study further involves VEGF in LD and highlights the prime importance of angiogenic factor balance for PR survival. Our results suggest that PR apoptosis is augmented by RPE cell permeability, which may induce high level of VEGF and could be deleterious. The specific action of RPE permeability on PR survival and the role of Src in the retina are under investigation.
Resumo:
Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4(-/-)) mice under various light-dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7-10 Hz) and gamma (40-70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4(-/-) mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-hratio1-h schedule revealed that the failure to respond to light in Opn4(-/-) mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4(-/-) mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4(-/-) mice slept 1 h less during the 12-h light period of a LD 12ratio12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4(-/-) mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4(-/-) mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.
Resumo:
Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase.
Resumo:
The ability to withstand environmental temperature variation is essential for plant survival. Former studies in Arabidopsis revealed that light signalling pathways had a potentially unique role in shielding plant growth and development from seasonal and daily fluctuations in temperature. In this paper we describe the molecular circuitry through which the light receptors cry1 and phyB buffer the impact of warm ambient temperatures. We show that the light signalling component HFR1 acts to minimise the potentially devastating effects of elevated temperature on plant physiology. Light is known to stabilise levels of HFR1 protein by suppressing proteasome-mediated destruction of HFR1. We demonstrate that light-dependent accumulation and activity of HFR1 are highly temperature dependent. The increased potency of HFR1 at warmer temperatures provides an important restraint on PIF4 that drives elongation growth. We show that warm ambient temperatures promote the accumulation of phosphorylated PIF4. However, repression of PIF4 activity by phyB and cry1 (via HFR1) is critical for controlling growth and maintaining physiology as temperatures rise. Loss of this light-mediated restraint has severe consequences for adult plants which have greatly reduced biomass.