410 resultados para Phagocytosis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Apocynin, a methoxy-catechol originally extracted from the root of Picrorhiza kurroa, has been used as an inhibitor of the NADPH oxidase complex in phagocytic and nonphagocytic cells. Its mechanism of inhibition is linked to their prior activation through the action of peroxidases leading to oxidation of the dimeric product, diapocynin. In this study, dipocinina was synthesized and investigated its effect as an inhibitor of activation NADPH oxidase in neutrophils (PMN) and peripheral blood mononuclear cells (PBMC). The synthesis of diapocinina was performed by oxidation of apocinina by potassium persulphate in the midst of water for 5 minutes at room temperature. The precipitate was filtered and washed with water and methanol. Diapocinina was characterized by mass spectrometry. PMN and PBMC were obtained from peripheral blood of healthy donors and purified for gelatin sedimentation, or centrifugation with Histopaque ®, the red cells were lysed with ice water or ammonium chloride. Diapocinina or apocinina were incubated with opsonized zymosan, activation of PMNs and release of superoxide anion, these monitored by chemiluminescent assay dependent lucigenina. We found that diapocinina inhibitor was no better than the apocinina in PMN. However, diapocinina was more efficient than apocinina as an inhibitor of NADPH oxidase in PBMC. In conclusion, whereas PBMC are relatively poor compared with peroxidases PMN, our results are consistent with the need for oxidation apocinina for its effect as an inhibitor of NADPH oxidase
Resumo:
Apocynin has been used as an efficient inhibitor of the multi-enzymatic complex NADPH oxidase in many experimental models involving phagocytic and nonphagocytic cells. The mechanism of inhibition has been linked with the previous activation of apocynin through the action of cellular peroxidases leading to the formation of a dimeric oxidation product, diapocynin. In this study we compared apocynin with pure diapocynin regarding their effects as scavenger of hydrogen peroxide and hypochlorous generated by glucose/glucose oxidase and myeloperoxidase respectively, and as inhibitors of the production of hydrogen peroxide and hypochlorous acid by activated neutrophils. The production of hydrogen peroxide was measured by the oxidation of the fluorescent substance Amplex Red and the production of hypochlorous acid by was measured as taurine-chloramine derivative using the chromogenic substrate 3,3’,5,5’- tetramethylbenzidine (TMB). Neutrophils (1 x106 cells/mL) were pre-incubated in PBS buffer supplemented with 1 mM calcium chloride, 0.5 mM magnesium chloride, 1 mg/mL glucose and 5 mM taurine in the presence or absence of inhibitors. The reactions were triggered by adding the soluble stimulus Forbol Miristate Acetate PMA or zymosan and incubated by additional 30 minutes. We found that pure diapocynin was not better than apocynin regarding its scavenger and inhibitory properties. These results suggest that the formation of diapocynin is not essential for the action of apocynin as inhibitor of NADPH oxidase activation
Resumo:
A fagocitose de células apoptóticas é um processo dinâmico e de fundamental importância para homeostase dos tecidos após uma injúria. A fagocitose de células apoptóticas promove a síntese de mediadores anti-inflamatórios como PGE2, TGF-β e IL-10, podendo resultar na supressão da resposta imune do hospedeiro contra agentes infecciosos. Entretanto, um elegante estudo utilizando células apoptóticas infectadas demonstrou que a fagocitose destas células promove a geração não apenas de citocinas anti-inflamatórias como TGF-β mas também de IL-6 e IL-23, promovendo um efeito imunoestimulador, a diferenciação de células Th17. A atuação da PGE2 na imunidade adaptativa vem sendo investigada quanto à diferenciação e ativação de linfócitos Th1, Treg e Th17. Os resultados aqui apresentados demonstram que o protocolo de diferenciação de células dendríticas utilizado foi capaz de gerar em torno de 85% de CD imaturas evidenciado pela expressão de um perfil fenotípico CD11c+CD11b+MHCIIlowCD80lowCD86low. Quanto à produção de PGE2, a fagocitose de AC+PAMP por células dendríticas foi capaz de induzir níveis elevados deste mediador lipídico nas diferentes proporções de células apoptóticas utilizadas. Os níveis de PGE2 encontrados no sobrenadante de cultura foi proporção dependente evidenciando uma relação direta entre fagocitose de AC+PAMP e a produção de PGE2. A fim de mimetizar a cinética da carga bacteriana durante uma infecção, ou seja, inicialmente uma menor carga bacteriana que tende a aumentar conforme ocorre a colonização, os animais foram inoculados com alta (high - 106 UFC de E. coli) e baixa (low - 105 UFC de E. coli) cargas bacterianas, gerando desta forma o que chamamos de AC+PAMPhigh e AC+PAMPlow, respectivamente. Os resultados aqui apresentados demonstram que diante de uma alta carga bacteriana há uma maior produção dos mediadores
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Paracoccidioides brasiliensis is a dimorphic fungus from the Paracoccidioides genus, which is the causative agent of paracoccidioidomycosis, a chronic, subacute or acute mycosis, with visceral and cutaneous involvement. This disease that is acquired through inhalation primarily attacks the lungs but, can spread to other organs. Phagocytic cells as neutrophils play an important role during innate immune response against this fungus, but studies on antifungal activities of these cells are scarce. In addition to their ability to eliminate pathogens by phagocytosis and antimicrobial secretions, neutrophils can trap and kill microorganisms by release of extracellular structures composed by DNA and antimicrobial proteins, called neutrophil extracellular traps (NETs). Here, we provide evidence that P. brasiliensis virulent strain (P. brasiliensis 18) induces NETs release. These structures were well evidenced by scanning electron microscopy, and specific NETs compounds such as histone, elastase and DNA were shown by confocal microscopy. In addition, we have shown that dectin-1 receptor is the main PRR to which fungus binds to induce NETS release. Fungi were ensnared by NETs, denoting the role of these structures in confining the fungus, avoiding dissemination. NETs were also shown to be involved in fungus killing, since fungicidal activity detected before and mainly after neutrophils activation with TNF-α, IFN-γ and GM-CSF was significantly inhibited by cocultures treatment with DNAse.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Under homeostatic conditions, a proportion of senescent CXCR4(hi) neutrophils home from the circulation back to the bone marrow, where they are phagocytosed by bone marrow macrophages. In this study, we have identified an unexpected role for the anti-inflammatory molecule annexin A1 (AnxA1) as a critical regulator of this process. We first observed that AnxA1(-/-) mice have significantly increased neutrophil numbers in their bone marrow while having normal levels of GM and G colony-forming units, monocytes, and macrophages. Although AnxA1(-/-) mice have more neutrophils in the bone marrow, a greater proportion of these cells are senescent, as determined by their higher levels of CXCR4 expression and annexin V binding. Consequently, bone marrow neutrophils from AnxA1(-/-) mice exhibit a reduced migratory capacity in vitro. Studies conducted in vitro also show that expression of AnxA1 is required for bone marrow macrophages, but not peritoneal macrophages, to phagocytose apoptotic neutrophils. Moreover, in vivo experiments indicate a defect in clearance of wild-type neutrophils in the bone marrow of AnxA1(-/-) mice. Thus, we conclude that expression of AnxA1 by resident macrophages is a critical determinant for neutrophil clearance in the bone marrow.-Dalli, J., Jones, C. P., Cavalcanti, D. M., Farsky, S. H., Perretti, M., Rankin, S. M. Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow. FASEB J. 26, 387-396 (2012). www.fasebj.org
Resumo:
The weaning period of piglets is characterized by physiological alterations, such as decreased weight gain, increased reactive oxygen species (ROS) and increased serum cortisol levels with possible effects on the immune response. The effect of parenteral administration of vitamins A, D and E on production performance, oxidative metabolism, and the function of polymorphonuclear leukocytes (PMNLs) was assessed in piglets during the weaning period. The sample was comprised of 20 male piglets that were given an injectable ADE vitamin combination (135,000 IU vitamin A, 40,000 IU vitamin D and 40mg vitamin E/animal) at 20 and 40 days of age. Weight gain, concentration of reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and the microbicidal and phagocytic activity of PMNLs were assessed. No difference was observed in the average piglet weight during the study; however, a greater percentage of weight gain was observed after weaning in the treated group. The concentrations of GSH and SOD did not differ between groups, although lipid peroxidation was greater in the control group at 60 days of age. The investigated variables of oxidative metabolism were correlated as follows: -0.41 for GSH and MDA, -0.54 for GSH and SOD and 0.34 for MDA and SOD. The intensity of intracellular ROS production, the percentage of ROS-producing PMNLs and the intensity of phagocytosis by PMNLs did not differ between treatment groups. Administration of the injectable ADE combination improved the percentage of weight gain between 20 and 40 days of age, decreased oxidative stress at 60 days of age and did not influence the function of PMNLs in piglets.
Resumo:
de Moura, NR, Cury-Boaventura, MF, Santos, VC, Levada-Pires, AC, Bortolon, JR, Fiamoncini, J, Pithon-Curi, TC, Curi, R, and Hatanaka, E. Inflammatory response and neutrophil functions in players after a futsal match. J Strength Cond Res 26(9): 2507-2514, 2012-Futsal players suffer injuries resulting from muscle fatigue and contact or collision among players. Muscle lesions can be detected by measuring muscle lesion markers such as creatine kinase (CK) and lactate dehydrogenase (LDH) in plasma. After an initial lesion, there is an increase in the plasma levels of C-reactive protein (CRP) and proinflammatory cytokines. These mediators may activate neutrophils and contribute to tissue damage and increase susceptibility to invasive microorganisms. In this study, we investigated the effect of a futsal match on muscle lesion markers, cytokines, and CRP in elite players. The basal and stimulated neutrophil responsiveness after a match was also evaluated based on measurements of neutrophil necrosis, apoptosis, phagocytic capacity, reactive oxygen species (ROS) production, and cytokines (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-8, IL-1 beta, IL-10, and IL-1ra) production. Blood samples were taken from 16 players (26.4 +/- 3.2 years, 70.2 +/- 6.9 kg, 59.7 +/- 5.1 ml.kg(-1).min(-1), sports experience of 4.4 +/- 0.9 years) before and immediately after a match. Exercise increased the serum activities of CK (2.5-fold) and LDH (1.3-fold). Playing futsal also increased the serum concentrations of IL-6 (1.6-fold) and CRP (1.6-fold). The TNF-alpha, IL-1 beta, IL-8, IL-1ra, and IL-10 serum levels were not modified in the conditions studied. The futsal match induced neutrophil apoptosis, as indicated by phosphatidylserine externalization (6.0-fold). The exercise induced priming of neutrophils by increasing ROS (1.3-fold), TNF-alpha (5.8-fold), and IL-1 beta (4.8-fold) released in nonstimulated cells. However, in the stimulated condition, the exercise decreased neutrophil function, diminishing the release of ROS by phorbol myristate acetate-stimulated neutrophils (1.5-fold), and the phagocytic capacity (1.6-fold). We concluded that playing futsal induces inflammation, primes and activates neutrophils, and reduces the efficiency of neutrophil phagocytosis immediately after a match.
Resumo:
Context and objective: The massive production of reactive oxygen species by neutrophils during inflammation may cause damage to tissues. Flavonoids act as antioxidants and have anti-inflammatory effects. In this study, liposomes loaded with these compounds were evaluated as potential antioxidant carriers, in attempt to overcome their poor solubility and stability. Materials and methods: Liposomes containing quercetin, myricetin, kaempferol or galangin were prepared by the ethanol injection method and analyzed as inhibitors of immune complex (IC) and phorbol ester-stimulated neutrophil oxidative metabolism by luminol (CLlum) and lucigenin-enhanced (CLluc) chemiluminescence (CL) assays. The mechanisms involved this activity of liposomal flavonoids, such as cytotoxicity and superoxide anion scavenging capacity, and their effect on phagocytosis of ICs were also investigated. Results and discussion: The results showed that the inhibitory effect of liposomal flavonoids on CLlum and CLluc is inversely related to the number of hydroxyl groups in the flavonoid B ring. Moreover, phagocytosis of liposomes by neutrophils does not seem to necessarily promote such activity, as the liposomal flavonoids are also able to reduce CL when the cells are pretreated with cytochalasin B. Under assessed conditions, the antioxidant liposomes are not toxic to the human neutrophils and do not interfere with IC-induced phagocytosis. Conclusion: The studied liposomes can be suitable carriers of flavonoids and be an alternative for the treatment of diseases in which a massive oxidative metabolism of neutrophils is involved.
Resumo:
Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of I kappa B and p65 subunit of NF kappa B phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NF kappa B activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of I kappa B and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NF kappa B, increased SOCS-1 and decreased MyD88 mRNA.