994 resultados para Ph D


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel Ca^(2+)-binding protein with Mr of 23 K (designated p23) has been identified in avian erythrocytes and thrombocytes. p23 localizes to the marginal bands (MBs), centrosomes and discrete sites around the nuclear membrane in mature avian erythrocytes. p23 appears to bind Ca^(2+) directly and its interaction with subcellular organelles seems to be modulated by intracellular [Ca^(2+)]. However, its unique protein sequence lacks any known Ca^(2+)-binding motif. Developmental analysis reveals that p23 association to its target structures occurs only at very late stages of bone marrow definitive erythropoeisis. In primitive erythroid cells, p23 distributes diffusely in the cytoplasm and lacks any distinct localization. It is postulated that p23 association to subcellular structures may be induced in part by decreased intracellular [Ca^(2+)]. In vitro and in vivo experiments indicate that p23 does not appear to act as a classical microtubule-associated protein (MAP) but p23 homologues appear to be expressed in MB-containing cells of a variety of species from different vertebrate classes. It has been hypothesized that p23 may play a regulatory role in MB stabilization in a Ca^(2+)-dependent manner.

Binucleated (bnbn) turkey erythrocytes were found to express a truncated p23 variant (designated p21) with identical subcellular localization as p23 except immunostaining reveals the presence of multi-centrosomes in bnbn cells. The p21 sequence has a 62 amino acid deletion at the C-terminus and must therefore have an additional ~40 amino acids at the N-terminus. In addition, p21 seems to have lost the ability to bind Ca^(2+) and its supramolecular interactions are not modulated by intracellular [Ca^(2+)]. These apparent differences between p23 and p21 raised the possibility that the p23/p21 allelism could be the Bn/bn genotype. However, genetic analysis suggested that p23/p21 allelism had no absolute correlation with the Bn/bn genotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.

Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Demixing is the task of identifying multiple signals given only their sum and prior information about their structures. Examples of demixing problems include (i) separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse components; and (iii) identifying a binary codeword with impulsive corruptions. This thesis describes and analyzes a convex optimization framework for solving an array of demixing problems.

Our framework includes a random orientation model for the constituent signals that ensures the structures are incoherent. This work introduces a summary parameter, the statistical dimension, that reflects the intrinsic complexity of a signal. The main result indicates that the difficulty of demixing under this random model depends only on the total complexity of the constituent signals involved: demixing succeeds with high probability when the sum of the complexities is less than the ambient dimension; otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is a consequence of a new inequality in conic integral geometry. Roughly speaking, this inequality asserts that a convex cone behaves like a subspace whose dimension is equal to the statistical dimension of the cone. When combined with a geometric optimality condition for demixing, this inequality provides precise quantitative information about the phase transition, including the location and width of the transition region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acceptor-doped ceria has been recognized as a promising intermediate temperature solid oxide fuel cell electrode/electrolyte material. For practical implementation of ceria as a fuel cell electrolyte and for designing model experiments for electrochemical activity, it is necessary to fabricate thin films of ceria. Here, metal-organic chemical vapor deposition was carried out in a homemade reactor to grow ceria films for further electrical, electrochemical, and optical characterization. Doped/undoped ceria films are grown on single crystalline oxide wafers with/without Pt line pattern or Pt solid layer. Deposition conditions were varied to see the effect on the resultant film property. Recently, proton conduction in nanograined polycrystalline pellets of ceria drew much interest. Thickness-mode (through-plane, z-direction) electrical measurements were made to confirm the existence of proton conductivity and investigate the nature of the conduction pathway: exposed grain surfaces and parallel grain boundaries. Columnar structure presumably favors proton conduction, and we have found measurable proton conductivity enhancement. Electrochemical property of gas-columnar ceria interface on the hydrogen electrooxidation is studied by AC impedance spectroscopy. Isothermal gas composition dependence of the electrode resistance was studied to elucidate Sm doping level effect and microstructure effect. Significantly, preferred orientation is shown to affect the gas dependence and performance of the fuel cell anode. A hypothesis is proposed to explain the origin of this behavior. Lastly, an optical transmittance based methodology was developed to obtain reference refractive index and microstructural parameters (thickness, roughness, porosity) of ceria films via subsequent fitting procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present measurements of the spatial distribution, kinematics, and physical properties of gas in the circumgalactic medium (CGM) of 2.0<z<2.8 UV color-selected galaxies as well as within the 2<z<3 intergalactic medium (IGM). These measurements are derived from Voigt profile decomposition of the full Lyα and Lyβ forest in 15 high-resolution, high signal-to-noise ratio QSO spectra resulting in a catalog of ∼6000 HI absorbers.

Chapter 2 of this thesis focuses on HI surrounding high-z star-forming galaxies drawn from the Keck Baryonic Structure Survey (KBSS). The KBSS is a unique spectroscopic survey of the distant universe designed to explore the details of the connection between galaxies and intergalactic baryons within the same survey volumes. The KBSS combines high-quality background QSO spectroscopy with large densely-sampled galaxy redshift surveys to probe the CGM at scales of ∼50 kpc to a few Mpc. Based on these data, Chapter 2 presents the first quantitative measurements of the distribution, column density, kinematics, and absorber line widths of neutral hydrogen surrounding high-z star-forming galaxies.

Chapter 3 focuses on the thermal properties of the diffuse IGM. This analysis relies on measurements of the ∼6000 absorber line widths to constrain the thermal and turbulent velocities of absorbing "clouds." A positive correlation between the column density of HI and the minimum line width is recovered and implies a temperature-density relation within the low-density IGM for which higher-density regions are hotter, as is predicted by simple theoretical arguments.

Chapter 4 presents new measurements of the opacity of the IGM and CGM to hydrogen-ionizing photons. The chapter begins with a revised measurement of the HI column density distribution based on this new absorption line catalog that, due to the inclusion of high-order Lyman lines, provides the first statistically robust measurement of the frequency of absorbers with HI column densities 14 ≲ log(NHI/cm-2) ≲ 17.2. Also presented are the first measurements of the column density distribution of HI within the CGM (50 <d < 300 pkpc) of high-z galaxies. These distributions are used to calculate the total opacity of the IGM and IGM+CGM and to revise previous measurements of the mean free path of hydrogen-ionizing photons within the IGM. This chapter also considers the effect of the surrounding CGM on the transmission of ionizing photons out of the sites of active star-formation and into the IGM.

This thesis concludes with a brief discussion of work in progress focused on understanding the distribution of metals within the CGM of KBSS galaxies. Appendix B discusses my contributions to the MOSFIRE instrumentation project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of exoplanets is rapidly evolving into an important and exciting field of its own. My investigations over the past half-decade have focused on understanding just a small sliver of what they are trying to tell us. That small sliver is their atmospheres. Atmospheres are the buffer between the bulk planet and the vacuum of space. The atmosphere is an important component of a planet as it is the most readily observable and contains the most information about the physical processes that can occur in a planet. I have focused on two aspects of exoplanetary atmospheres. First, I aimed to understand the chemical mechanisms that control the atmospheric abundances. Second, I focused on interpreting exoplanet atmospheric spectra and what they tell us about the temperatures and compositions through inverse modeling. Finally, I interpreted the retrieved temperature and abundances from inverse modeling in the context of chemical disequilibrium in the planetary atmospheres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.

To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.

Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.

With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.

Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.

Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The model dependence inherent in hadronic calculations is one of the dominant sources of uncertainty in the theoretical prediction of the anomalous magnetic moment of the muon. In this thesis, we focus on the charged pion contribution and turn a critical eye on the models employed in the few previous calculations of $a_\mu^{\pi^+\pi^-}$. Chiral perturbation theory provides a check on these models at low energies, and we therefore calculate the charged pion contribution to light-by-light (LBL) scattering to $\mathcal{O}(p^6)$. We show that the dominant corrections to the leading order (LO) result come from two low energy constants which show up in the form factors for the $\gamma\pi\pi$ and $\gamma\gamma\pi\pi$ vertices. Comparison with the existing models reveal a potentially significant omission - none include the pion polarizability corrections associated with the $\gamma\gamma\pi\pi$ vertex. We next consider alternative models where the pion polarizability is produced through exchange of the $a_1$ axial vector meson. These have poor UV behavior, however, making them unsuited for the $a_\mu^{\pi^+\pi^-}$ calculation. We turn to a simpler form factor modeling approach, generating two distinct models which reproduce the pion polarizability corrections at low energies, have the correct QCD scaling at high energies, and generate finite contributions to $a_\mu^{\pi^+\pi^-}$. With these two models, we calculate the charged pion contribution to the anomalous magnetic moment of the muon, finding values larger than those previously reported: $a_\mu^\mathrm{I} = -1.779(4)\times10^{-10}\,,\,a_\mu^\mathrm{II} = -4.892(3)\times10^{-10}$.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).

(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.

(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.

(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.

The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past decade, scholarly interest concerning the use of limitations to constrain government spending and taxing has noticeably increased. The call for constitutional restrictions can be credited, in part, to Washington's apparent inability to legislate any significant reductions in government expenditures or in the size of the national debt. At the present time, the federal government is far from instituting any constitutional limitations on spending or borrowing; however, the states have incorporated many controls on revenues and expenditures, the oldest being strictures on full faith and credit borrowing. This dissertations examines the efficacy of these restrictions on borrowing across the states (excluding Alaska) for the period dating from 1961 to 1990 and also studies the limitations on taxing and spending synonymous with the Tax Revolt.

We include socio-economic information in our calculations to control for factors other than the institutional variables that affect state borrowing levels. Our results show that certain constitutional restrictions (in particular, the referendum requirement and the dollar debt limit) are more effective than others. The apparent ineffectiveness of other limitations, such as the flexible debt limit, seem related to the bindingness of the limitations in at least half of the cases. Other variables, such as crime rates, number of schoolage children, and state personal income do affect the levels of full faith and credit debt, but not as strongly as the limitations. While some degree of circumvention can be detected (the amount of full faith and credit debt does inversely affect the levels of nonguaranteed debt), it is so small when compared to the effectiveness of the constitutional restrictions that it is almost negligible. The examination of the tax revolt era limitations yielded quite similar conclusions, with the additional fact that constitutional restrictions appear more binding than statutory ones. Our research demonstrates that constitutional limitations on borrowing can be applied effectively to constrain excessive borrowing, but caution must be used. The efficacy of these restrictions decrease dramatically as the number of loopholes increase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the design, construction and performance of a high-pressure, xenon, gas time projection chamber (TPC) for the study of double beta decay in ^(136) Xe. The TPC when operating at 5 atm can accommodate 28 moles of 60% enriched ^(136) Xe. The TPC has operated as a detector at Caltech since 1986. It is capable of reconstructing a charged particle trajectory and can easily distinguish between different kinds of charged particles. A gas purification and xenon gas recovery system were developed. The electronics for the 338 channels of readout was developed along with a data acquistion system. Currently, the detector is being prepared at the University of Neuchatel for installation in the low background laboratory situated in the St. Gotthard tunnel, Switzerland. In one year of runtime the detector should be sensitive to a 0ν lifetime of the order of 10^(24) y, which corresponds to a neutrino mass in the range 0.3 to 3.3 eV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis examines four distinct facets and methods for understanding political ideology, and so it includes four distinct chapters with only moderate connections between them. Chapter 2 examines how reactions to emotional stimuli vary with political opinion, and how the stimuli can produce changes in an individuals political preferences. Chapter 3 examines the connection between self-reported fear and item nonresponse on surveys. Chapter 4 examines the connection between political and moral consistency with low-dimensional ideology, and Chapter 5 develops a technique for estimating ideal points and salience in a low-dimensional ideological space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.