966 resultados para Permutation-Symmetric Covariance
Resumo:
Recently, stable markerless 6 DOF video based handtracking devices became available. These devices simultaneously track the positions and orientations of both user hands in different postures with at least 25 frames per second. Such hand-tracking allows for using the human hands as natural input devices. However, the absence of physical buttons for performing click actions and state changes poses severe challenges in designing an efficient and easy to use 3D interface on top of such a device. In particular, for coupling and decoupling a virtual object’s movements to the user’s hand (i.e. grabbing and releasing) a solution has to be found. In this paper, we introduce a novel technique for efficient two-handed grabbing and releasing objects and intuitively manipulating them in the virtual space. This technique is integrated in a novel 3D interface for virtual manipulations. A user experiment shows the superior applicability of this new technique. Last but not least, we describe how this technique can be exploited in practice to improve interaction by integrating it with RTT DeltaGen, a professional CAD/CAS visualization and editing tool.
Resumo:
In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.
Resumo:
The process of adaptive radiation involves multiple events of speciation in short succession, associated with ecological diversification. Understanding this process requires identifying the origins of heritable phenotypic variation that allows adaptive radiation to progress. Hybridization is one source of genetic and morphological variation that may spur adaptive radiation. We experimentally explored the potential role of hybridization in facilitating the onset of adaptive radiation. We generated first- and second-generation hybrids of four species of African cichlid fish, extant relatives of the putative ancestors of the adaptive radiations of Lakes Victoria and Malawi. We com- pared patterns in hybrid morphological variation with the variation in the lake radiations. We show that significant fractions of the interspecific mor- phological variation and the major trajectories in morphospace that charac- terize whole radiations can be generated in second-generation hybrids. Furthermore, we show that covariation between traits is relaxed in second- generation hybrids, which may facilitate adaptive diversification. These results support the idea that hybridization can provide the heritable pheno- typic diversity necessary to initiate adaptive radiation.
Resumo:
A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.
Resumo:
An in-depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of observations to obtain the most accurate orbit propagation. The accuracy of the results of an orbit determination/ improvement process depends on: tracklet length, number of observations, type of orbit, astrometric error, time interval between tracklets and observation geometry. The latter depends on the position of the object along its orbit and the location of the observing station. This covariance analysis aims to optimize the observation strategy taking into account the influence of the orbit shape, of the relative object-observer geometry and the interval between observations.
Resumo:
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for space debris using optical sensors. The debris objects are discovered during systematic survey observations. In general, the result of a discovery consists in only a short observation arc, or tracklet, which is used to perform a first orbit determination in order to be able to observe t he object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In order to obtain the most accurate orbit within the time available it is necessary to optimize the follow-up observations strategy. In this paper an in‐depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of follow-up observations to obtain the most accurate orbit propagation to be used for the space debris catalogue maintenance. The main factors that determine the accuracy of the results of an orbit determination/improvement process are: tracklet length, number of observations, type of orbit, astrometric error of the measurements, time interval between tracklets, and the relative position of the object along its orbit with respect to the observing station. The main aim of the covariance analysis is to optimize the follow-up strategy as a function of the object-observer geometry, the interval between follow-up observations and the shape of the orbit. This an alysis can be applied to every orbital regime but particular attention was dedicated to geostationary, Molniya, and geostationary transfer orbits. Finally the case with more than two follow-up observations and the influence of a second observing station are also analyzed.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.
Resumo:
The role of clinical chemistry has traditionally been to evaluate acutely ill or hospitalized patients. Traditional statistical methods have serious drawbacks in that they use univariate techniques. To demonstrate alternative methodology, a multivariate analysis of covariance model was developed and applied to the data from the Cooperative Study of Sickle Cell Disease.^ The purpose of developing the model for the laboratory data from the CSSCD was to evaluate the comparability of the results from the different clinics. Several variables were incorporated into the model in order to control for possible differences among the clinics that might confound any real laboratory differences.^ Differences for LDH, alkaline phosphatase and SGOT were identified which will necessitate adjustments by clinic whenever these data are used. In addition, aberrant clinic values for LDH, creatinine and BUN were also identified.^ The use of any statistical technique including multivariate analysis without thoughtful consideration may lead to spurious conclusions that may not be corrected for some time, if ever. However, the advantages of multivariate analysis far outweigh its potential problems. If its use increases as it should, the applicability to the analysis of laboratory data in prospective patient monitoring, quality control programs, and interpretation of data from cooperative studies could well have a major impact on the health and well being of a large number of individuals. ^
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.