914 resultados para Perfect codes
Resumo:
The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX. © 2009 Elsevier B.V. All rights reserved.
Resumo:
An achievable rate is given for discrete memoryless channels with a given (possibly suboptimal) decoding rule. The result is obtained using a refinement of the superposition coding ensemble. The rate is tight with respect to the ensemble average, and can be weakened to the LM rate of Hui and Csiszár-Körner, and to Lapidoth's rate based on parallel codebooks. © 2013 IEEE.
Resumo:
This paper presents an achievable second-order rate region for the discrete memoryless multiple-access channel. The result is obtained using a random-coding ensemble in which each user's codebook contains codewords of a fixed composition. It is shown that this ensemble performs at least as well as i.i.d. random coding in terms of second-order asymptotics, and an example is given where a strict improvement is observed. © 2013 IEEE.
Resumo:
Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
A novel silicon structure consisting of a silicon-on-defect layer (SODL), with enhanced surface Hall mobility in the surface layer on a buried defect layer (DL), has been discovered [J. Li, Nucl. Instr. and Meth. B59/60 (1991) 1053]. SODL material was formed by using proton implantation and subsequent two-step annealing. The implantation was carried out with a Varian 350D ion implanter. Based on the discovery, a standard measurement method (current-voltage curve method) was adopted to measure the true resistivity value of the DL in order to replace the spreading resistivity measurement by which the true resistivity in seriously defective silicon cannot be obtained. By adopting the current-voltage current method, the true resistivity value of the DL is measured to be 4.2 x 10(9) OMEGA cm. The SODL material was proved to be a silicon-on-insulator substrate.
Resumo:
Dembowski-Ostrom型完全非线性函数是目前最主要的完全非线性函数类,已发现的完全非线性函数中只有一种不属于Dembowski-Ostrom型.为此,该文首先给出Dembowski-Ostrom型完全非线性函数的定义,将已有的线性码构造推广到这一类型函数上.进而给出此类函数构造的线性码的码字与有限域上非退化二次型之间的关系,并得到相应二次型的原像分布的一些性质.通过有限域上的二次型以及指数和理论,用统一的方法完全确定了基于所有Dembowski-Ostrom型完全非线性函数构造的两类线性码的权分布.
Resumo:
Archer, Jayne, 'A ?Perfect Circle'? Alchemy in the Poetry of Hester Pulter', Literature Compass (2005) 2(1) pp.1-14 RAE2008
Resumo:
Mavron, Vassili; McDonough, T.P.; Key, J.D., (2006) 'Information sets and partial permutation decoding for codes from finite geometries', Finite Fields and their applications 12(2) pp.232-247 RAE2008
Resumo:
Brian Garrod and David A. Fennell (2004). An analysis of whalewatching codes of conduct. Annals of Tourism Research, 31(2), 334-352. RAE2008
Resumo:
Fast forward error correction codes are becoming an important component in bulk content delivery. They fit in naturally with multicast scenarios as a way to deal with losses and are now seeing use in peer to peer networks as a basis for distributing load. In particular, new irregular sparse parity check codes have been developed with provable average linear time performance, a significant improvement over previous codes. In this paper, we present a new heuristic for generating codes with similar performance based on observing a server with an oracle for client state. This heuristic is easy to implement and provides further intuition into the need for an irregular heavy tailed distribution.
Resumo:
The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory.
Resumo:
BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088)