996 resultados para Pb-Pb collisions
Resumo:
制备了一系列 Bi—Pb—Sr—Ca—Cu—O 超导材料。在一定范围内,不同组分的 Bi—Pb—Sr—Ca—Cu—O 样品都能得到接近单110K 相的材料,但样品性能差别极大.性能的好坏极大地依赖着组成条件。烧结温度过高或过低都不利于提高样品的临界电流密度,850℃的烧结温度是较合适的,长时间烧结有利于110K 相的形成。样品烧结完成后,应缓慢降温退火,以保证材料充分吸氧。
Resumo:
本文利用DSC,红外光谱,核磁共振等方法研究了四价钼体系聚合所得1,2-PB的结构与性能,讨论了1,2-PB的分予链结构对物理性能的影响,并将玻璃化温度与链结构参数间的关系式修订为:T_s=91v+220S~2—106,该式能够很好地描述钼系催化合成的高乙烯基聚丁二烯。
Resumo:
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh basaltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cumulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.
Resumo:
The recent years research indicated that middle-south section of Da Hinggan Mountains metallogenic belt has two periods(Hercynian and Yanshanian) characteristics of metallogenesis, as well as the most of ore deposits in the area closely relate to Permian strata. Longtoushan ore deposit discovered in 2004 is an Ag-Pb-Zn polymetallic ore deposit born in Permian and located in the east hillside of the metallogenic belt, which has considerable resources potentials. It has important research value for its good metallogenic location and blank research history. Base on the detail field geology studies, the geology characteristics of "two stages and three kinds of metallogensis" has established. According to further work through geochemistry research including trace element, REE, S, Pb and Sr isotope, as well as petrography, microtemperature measurement, Laser Raman analysis and thermodynamics calculation of fluid inclusion, origin and characteristic of the ore-forming material and fluid has been discussed. And a new technology of single pellet Rb-Sr isochrones has been tried for dating its born time. Bae on above work, study of ore deposit comparison has been carried out, and metallogesis controlling factor and geological prospecting symbol have been summarized. Finally, metallogenic model and prospecting model have been established. According to above, the next step work direction has been proposed. Main achievement of the paper are listed as follow: 1.Longtoushan ore deposit has experienced two metallogenic periods including hot-water sedimentation period and hydrothermal reformation period. There are three kinds of metallizing phase: bedded(or near-bedded) phase, vein-shaped phase and pipe-shaped phase. The mian metallogenic period is hot-water sedimentation period. 2.Ore deposit geochemistry research indicated that the metal sulfides have charcateristic of hot-water sedimentation metallogensis, but generally suffered later hydrothermal transformation. The barite mineral isotope content is homogenous, showing the seabed hot-water sedimentation origin characteristic. Wall rock, such as tuff is one of metallogenic material origins. Both of Pb model age and Rb-Sr isochrone research older age value than that of strata, possibly for been influenced by hydrothermal transformation, and interfusion of ancient basis material. 3.There are two kinds of main metallogenic fluid inclusion in barite of the Longtoushan ore deposit, which are rich gas phase( C type) and liquid phase (D type). Their size is 2~7um, and principal components is H2O. Both kinds of fluid inclusion have freezing point temperature -7.1~-2.4℃ and -5.5~-0.3℃, salinity 4.0~10.6wt% and 0.5~8.5wt%, homogeneous temperature 176.8~361.6℃ and 101.4~279.9℃, which peak value around 270℃ and 170℃, respectively. Density of the ore-forming fluid is 0.73~0.97g/cm3, and metallogenic pressure is 62.3×105~377.9×105Pa. Above characteristic of the fluid inclusion are well geared to that of ore deposit originated in seabed hot-water sedimentation. 4.Through the comparison research, that Longtoushan ore deposit has main characteristic of hot-water sedimentation ore deposit has been indicated. Ore-forming control factor and prospecting symbol of it has been summarized, as well as metallogenic model and prospecting model. Next step work direction about prospecting has also been proposed finally.
Resumo:
Kunyushan composite granite pluton is located in northeast part of the Sulu UHP collisional belt, Jiaodong peninsula, eastern China. It is regarded as the boundary of the Jiaodong block and the Sulu UHP collisional belt. The body is unique in the Dabieshan-Sulu UHP collisional orogen for its feature of multiple intrusions of diverse types granitoid rocks in a long span after UHP the collision between the North China and the Yangtze plates in late Triassic. It can be grouped into four series on the basis of petrology and petrochemistry. They are mid-K calc-alkaline granitoids, strongly peraluminous granites, high-K calc-alkaline granitoids and syenitic granite of shoshonitic series. In this thesis, the later three types of rocks are investigated geochronologically in detail. The grain zircon U-Pb isotope dilution dating technique has been employed in this study. Zircon morphology are presented and discussion on the chemical and physical conditions of the granite formation have been carried out in addtion. Strongly peraluminous granites comprises foliated monzogranite and garnet bearing leucogranite. They occupy more than half of the area of the Kunyushan composite body. Three zircon samples of foliated monzogranites have been analyzed, they yield lower intercept ages mainly in the range of 140-150 Ma. The formation of these rocks was likely to be at 700-600 ℃, implied by zircon morphology. Two zircon samples of the garnet bearing leucogranite yield lower intercept ages from 130 Ma to 140 Ma. Zircon morphology indicate that the liquidus temperature of the magma was about 750 °C. Syenitic granite of shoshonitic series occur in the north central part of the body, and the volume is quite small contrast to other types. One zircon sample was chosen from this rock, and yield lower intercept age of 121+1.8/-2.1 Ma. Zircon morphology indicate that the liquidus temperature of this rock is up to 900 °C, which is much higher than others'. High-K calc-alkaline granitoids can be divided into two types on the basis of rock texture and structure. One is Kf-porphyritic monzogranite. It's outcrop is quite small. Zircon ages of one sample constrain the emplacement of this rock at about 112 Ma. The other is medium-grain to coarse-grain monzogranite. Zircons from it yield lower intercept age of 100.5+2.9/-4.6 Ma. The variation of zircon morphology suggest that these two monzogranites were outcomes of a single magma at different stage. The former emplaced earlier than the latter. The liquidus temperature of the magma was about 800 ℃ Inherited zircon is ubiquitous in the Kunyushan composite body. Most of the samples yield upper intercept ages of late Proterozoic. It was considered that only the Yangtze plate underwent a crustal growth during late Proterozoic among the two plates which involved into the UHP collision. Inherited zircon of about 200 Ma can also be observed in strongly peraluminous and high-K calc-alkaline granitoids. Two samples out of eight yield upper intercept ages of Achaean.
Resumo:
利用XRD、TEM/EDS和连续提取实验研究了土法炼锌固体废渣中重金属的矿物学特征及不同粒度中重金属的相态分布特征。与通常发现的重金属一般富集在小粒径废渣中的情况不同,本工作所研究的废渣样品中大粒径废渣与细粒径废渣相似,甚至有更高的金属含量。化学形态研究表明,冶炼过程形成的矿物(或玻璃质)集合体和堆积后的风化过程形成的次生矿物是废渣中重金属存在的主要化学相。同时发现Pb的殖渣态很少(0.39%-15.75%),而Zn的残渣态较高(14.3%-46.2%),这可能与冶炼工艺所形成较多Zn的硅酸盐矿物有关。尽管可交换态Pb、Zn在不同相态中的相对比例非常小(Pb 0.03%-1.30%;Zn 0.03%-3.30%),但其绝对含量却比一般土壤或沉积物要高(Pb1.5-385μg/g;Zn3-590μg/g)。由于重金属可交换态有比其他化学相态更高的活动性和生物可利用性,因此,对环境有较大的潜在影响。废渣样品的微束分析表明,Pb在废渣中见有金属Pb存在形式或呈纳米金属Pb颗粒包裹于其他矿物或铁合金及熔球集合体中。同时不排除有Pb的碳酸盐矿物存在的可能。而以硅锌矿Zn2(SiO4)、锰硅锌矿(Zn,Mn)2[SiO4]和纤维状的丝锌铝石Zn8Al4[(OH)8(SiO4)5]·7H2O等矿物形式存在以及Fe、Mn等的铝硅酸盐形式存在的Zn,可能是导致Zn的残渣态较高的原因。与连续提取法的实验结果有较好的一致性。
Resumo:
利用X射线衍射(XRD)和带能谱的电子显微镜(TEM/SEM)等方法研究土法炼锌固体废物的矿物组成,特别是重金属Pb和Zn的矿物学赋存特征。结果表明:固体废物是一种高度不均匀的复杂集合体。废渣主要是由石英、长石、碳酸盐矿物、铁质和铝质的非晶质玻璃以及少量风化次生矿物相组成。Pb在废渣中主要以金属Pb形式存在,或呈纳米金属Pb颗粒包裹或吸附于其它矿物表面及玻璃质集合体中。废渣中Zn的存在形式比Pb复杂得多,有硅锌矿、 锰硅锌矿、丝锌铝石等矿物存在形式,在其它矿物表面或玻璃质集体体中也能见到少量纳米级金属Zn。
Resumo:
对榨子厂附近一个废弃多年的古老土法炼锌点土壤和沉积物中重金属的积累及污染程度进行了研究。研究区土壤、沉积物样品中Pb、Zn、Cd 含量已大大高于该地区的背景值,zn 的积累明显大于Pb 的积累程度。相关分析表明,土壤和沉积物中Fe2O3对重金属有强烈的固定作用。沉积物和土壤中有很高的综合污染指数,显示出重金属的污染程度很高。化学形态分析表明重金属以碳酸盐结合态、残渣态和铁锰氧化物结合态为主,有效态所占的比例很低,但其含量并不很低,在酸性条件下,有释放导致污染的可能性。同位素示踪结果显示,研究区土壤和沉积物中积累的Pb、S 为矿山物质来源。
Resumo:
对海南63 个土壤样品中的Zn、Pb、Cu、Cd 四种重金属的总量和生物有效态含量以及45 个植物样(根、茎、叶) 中的重金属含量分别进行了测定,采样点基本上覆盖了海南全省,测定结果表明,土壤中Zn 总量低于全国平均值,而Pb、Cu、Cd 高于全国平均值,土壤中重金属生物有效态含量一般低于其总量的10 % ,其中Pb 最高为7. 71 % ,而Cu 仅为1. 13 % ,具有较大的变异性;植物中重金属含量与土壤中重金属总量呈现负相关性,但与土壤中有效态重金属含量一般呈现正相关性,叶中的重金属含量与土壤中有效态重金属含量之间的相关性更为显著,叶中的重金属含量与土壤中有效态重金属含量之间的相关系数分别为: Zn (01726) ,Cu (01626) , Pb(01774) ,Cd(01512) 。这说明土壤中重金属总量并不能全面的评价土壤的环境效应和重金属的生物有效性,应该把重金属总量和生物有效态含量结合起来加以研究,并应将土壤中重金属的含量与植物中该元素含量之间作相关分析,根据其相关系数的大小来判断其生物有效性的程度。