946 resultados para Patent licenses
Resumo:
Closure of the patent foramen ovale does not benefit from echocardiographic guidance in the majority of cases. Guiding these procedures with fluoroscopy only reduces procedure time, radiation exposure, and amount of contrast medium. There is a clear trend to abandon echocardiographic guidance for this procedure over time and with growing experience.
Resumo:
We review and extend the core literature on international transfer price manipulation to avoid or evade taxes. Under negotiated transfer pricing with a viable bargaining structure, including performance evaluation disconnected from the transfer price, divisions voluntarily exchange accurate information to obtain firm-wide optimality, a result not dependent on restraint from exercising internal market power. For intangible licenses, a larger optimal profit shift for a given tax rate change strengthens incentives for transfer pricing abuse. In practice, an intangible's arm's length range is viewed as a guideline, a context where incentives for abuse materialize. Transfer pricing for intangibles obliges greater tax authority scrutiny.
Resumo:
von J. Keidel
Resumo:
[Fr. Wilhelm]
Resumo:
[Fr. Wilhelm]
Resumo:
Welsch (Projektbearbeiter): Darstellung der Geschehnisse des 18. März 1848 (Aufstand in Berlin und Barrikadenkämpfe gegen das Militär) aus der Sicht Friedrich Wilhelms IV. Aufruf zur Niederlegung der Barrikaden, Versprechen des Truppenrückzuges von den öffentlichen Straßen und Plätzen
Resumo:
At issue is whether or not isolated DNA is patent eligible under the U.S. Patent Law and the implications of that determination on public health. The U.S. Patent and Trademark Office has issued patents on DNA since the 1980s, and scientists and researchers have proceeded under that milieu since that time. Today, genetic research and testing related to the human breast cancer genes BRCA1 and BRCA2 is conducted within the framework of seven patents that were issued to Myriad Genetics and the University of Utah Research Foundation between 1997 and 2000. In 2009, suit was filed on behalf of multiple researchers, professional associations and others to invalidate fifteen of the claims underlying those patents. The Court of Appeals for the Federal Circuit, which hears patent cases, has invalidated claims for analyzing and comparing isolated DNA but has upheld claims to isolated DNA. The specific issue of whether isolated DNA is patent eligible is now before the Supreme Court, which is expected to decide the case by year's end. In this work, a systematic review was performed to determine the effects of DNA patents on various stakeholders and, ultimately, on public health; and to provide a legal analysis of the patent eligibility of isolated DNA and the likely outcome of the Supreme Court's decision. ^ A literature review was conducted to: first, identify principle stakeholders with an interest in patent eligibility of the isolated DNA sequences BRCA1 and BRCA2; and second, determine the effect of the case on those stakeholders. Published reports that addressed gene patents, the Myriad litigation, and implications of gene patents on stakeholders were included. Next, an in-depth legal analysis of the patent eligibility of isolated DNA and methods for analyzing it was performed pursuant to accepted methods of legal research and analysis based on legal briefs, federal law and jurisprudence, scholarly works and standard practice legal analysis. ^ Biotechnology, biomedical and clinical research, access to health care, and personalized medicine were identified as the principle stakeholders and interests herein. Many experts believe that the patent eligibility of isolated DNA will not greatly affect the biotechnology industry insofar as genetic testing is concerned; unlike for therapeutics, genetic testing does not require tremendous resources or lead time. The actual impact on biomedical researchers is uncertain, with greater impact expected for researchers whose work is intended for commercial purposes (versus basic science). The impact on access to health care has been surprisingly difficult to assess; while invalidating gene patents might be expected to decrease the cost of genetic testing and improve access to more laboratories and physicians' offices that provide the test, a 2010 study on the actual impact was inconclusive. As for personalized medicine, many experts believe that the availability of personalized medicine is ultimately a public policy issue for Congress, not the courts. ^ Based on the legal analysis performed in this work, this writer believes the Supreme Court is likely to invalidate patents on isolated DNA whose sequences are found in nature, because these gene sequences are a basic tool of scientific and technologic work and patents on isolated DNA would unduly inhibit their future use. Patents on complementary DNA (cDNA) are expected to stand, however, based on the human intervention required to craft cDNA and the product's distinction from the DNA found in nature. ^ In the end, the solution as to how to address gene patents may lie not in jurisprudence but in a fundamental change in business practices to provide expanded licenses to better address the interests of the several stakeholders. ^
Resumo:
The introduction of pharmaceutical product patents in India and other developing countries is expected to have a significant effect on public health and local pharmaceutical industries. This paper draws implications from the historical experience of Japan when it introduced product patents in 1976. In Japan, narrow patents and promotion of cross-licensing were effective tools to keep drug prices in check while ensuring the introduction of new drugs. While the global pharmaceutical market surrounding India today differs considerably from that of the 1970's, the Japanese experience offers a policy option that may profitably be considered by India today. The Indian patent system emphasizes the patentability requirement in contrast to the Japanese patent policy which relied on narrow patents and extensive licensing. R&D by local firms and the development of local products may be promoted more effectively under the Japanese model.
Resumo:
Who invents medicines for the poor of the world? This question becomes very important where the WTO allows low income countries to be unbound by the TRIPS agreement. This agreement concerns medicines for infectious diseases such as HIV/AIDS, tuberculosis and malaria. These diseases cause serious damage to low income countries. Under these circumstances, some scholars wonder if anyone will continue innovative activities related to treating these diseases. This paper sought to answer this question by collecting and analyzing patent data of medicines and vaccines for diseases using the database of the Japan Patent Office. Results indicate that private firms have led in innovation not only for global diseases such as HIV/AIDS but also diseases such as malaria that are spreading exclusively in low income countries. Innovation for the three infectious diseases is diverse among firms, and frequent patent applications by high-performing pharmaceutical firms appear prominent even after R&D expenditure, economies of scale, and economies of scope are taken into account.
Resumo:
The introduction of pharmaceutical product patents in India and other developing countries is expected to have a significant effect on public health and local pharmaceutical industries. This paper draws implications from the historical experience of Japan when it introduced product patents in 1976. In Japan, narrow patents and promotion of cross-licensing were effective tools to keep drug prices in check while ensuring the introduction of new drugs. While the global pharmaceutical market surrounding India today differs considerably from that of the 1970's, the Japanese experience offers a policy option that may profitably be considered by India today. The Indian patent system emphasizes the patentability requirement in contrast to the Japanese patent policy which relied on narrow patents and extensive licensing. R&D by local firms and the development of local products may be promoted more effectively under the Japanese model.
Resumo:
The growing importance of innovation in economic growth has encouraged the development of innovation capabilities in East Asia, within which China, Japan, and Korea are most important in terms of technological capabilities. Using Japanese patent data, we examine how knowledge networks have developed among these countries. We find that Japan's technological specialization saw little change, but those of Korea and China changed rapidly since 1970s. By the year 2009, technology specialization has become similar across three countries in the sense that the common field of prominent technology is "electronic circuits and communication technologies". Patent citations suggest that technology flows were largest in the electronic technology, pointing to the deepening of innovation networks in these countries.
Resumo:
The growing importance of innovation in economic growth has encouraged the development of innovation capabilities in East Asia, within which China, Japan, and Korea are most important in terms of technological capabilities. Using U.S. patent data, we examine how knowledge networks have developed among these countries. We find that Japan's technological specialization saw gradual changes, but those of Korea and China changed rapidly since 1970s. By the year 2009, technology specialization has become similar across three countries in the sense that the common fields of prominent technology are electronics and semiconductors. Patent citations suggest that technology flows were largest in the electronics technology, pointing to the deepening of innovation networks in these countries. Together with our prior work, the Japanese and U.S. data produce similar conclusions about innovation networks.
Resumo:
Given the significant impact of Web 2.0-related innovations on new Internet-based initiatives, this paper seeks to identify to what extent the main developments are protected by patents and whether patents have had a leading role in the advent of Web 2.0. The article shows that the number of patent applications filed is not that important for many of the Web 2.0 technologies in frequent use and that, of those filed, those granted are even less. The conclusion is that patents do not seem to be a relevant factor in the development of the Web 2.0 (and more generally in dynamic markets) where there is a high degree of innovation and low entry barriers for newcomers.
Resumo:
The Bioinstrumentation Laboratory belongs to the Centre for Biomedical Technology (CTB) of the Technical University of Madrid and its main objective is to provide the scientific community with devices and techniques for the characterization of micro and nanostructures and consequently finding their best biomedical applications. Hyperthermia (greek word for “overheating”) is defined as the phenomenon that occurs when a body is exposed to an energy generating source that can produce a rise in temperature (42-45ºC) for a given time [1]. Specifically, the aim of the hyperthermia methods used in The Bioinstrumentation Laboratory is the development of thermal therapies, some of these using different kinds of nanoparticles, to kill cancer cells and reduce the damage on healthy tissues. The optical hyperthermia is based on noble metal nanoparticles and laser irradiation. This kind of nanoparticles has an immense potential associated to the development of therapies for cancer on account of their Surface Plasmon Resonance (SPR) enhanced light scattering and absorption. In a short period of time, the absorbed light is converted into localized heat, so we can take advantage of these characteristics to heat up tumor cells in order to obtain the cellular death [2]. In this case, the laboratory has an optical hyperthermia device based on a continuous wave laser used to kill glioblastoma cell lines (1321N1) in the presence of gold nanorods (Figure 1a). The wavelength of the laser light is 808 nm because the penetration of the light in the tissue is deeper in the Near Infrared Region. The first optical hyperthermia results show that the laser irradiation produces cellular death in the experimental samples of glioblastoma cell lines using gold nanorods but is not able to decrease the cellular viability of cancer cells in samples without the suitable nanorods (Figure 1b) [3]. The generation of magnetic hyperthermia is performed through changes of the magnetic induction in magnetic nanoparticles (MNPs) that are embedded in viscous medium. The Figure 2 shows a schematic design of the AC induction hyperthermia device in magnetic fluids. The equipment has been manufactured at The Bioinstrumentation Laboratory. The first block implies two steps: the signal selection with frequency manipulation option from 9 KHz to 2MHz, and a linear output up to 1500W. The second block is where magnetic field is generated ( 5mm, 10 turns). Finally, the third block is a software control where the user can establish initial parameters, and also shows the temperature response of MNPs due to the magnetic field applied [4-8]. The Bioinstrumentation Laboratory in collaboration with the Mexican company MRI-DT have recently implemented a new research line on Nuclear Magnetic Resonance Hyperthermia, which is sustained on the patent US 7,423,429B2 owned by this company. This investigation is based on the use of clinical MRI equipment not only for diagnosis but for therapy [9]. This idea consists of two main facts: Magnetic Resonance Imaging can cause focal heating [10], and the differentiation in resonant frequency between healthy and cancer cells [11]. To produce only heating in cancer cells when the whole body is irradiated, it is necessary to determine the specific resonant frequency of the target, using the information contained in the spectra of the area of interest. Then, special RF pulse sequence is applied to produce fast excitation and relaxation mechanism that generates temperature increase of the tumor, causing cellular death or metabolism malfunction that stops cellular division